• Title/Summary/Keyword: Coupling Agent

Search Result 348, Processing Time 0.022 seconds

The Effect of Silane Compound on the Cure Reaction and Mechanical Properties of PEG, PCP Binder for Propellant (Silane화합물이 추진제용 PEG, PCP바인더의 경화 및 특성에 미치는 영향)

  • 홍명표
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.1-5
    • /
    • 2000
  • The silane compounds as a coupling agent have been used in the propellant in order to enhance the mechanical property and lower the viscosity. They showed great effects in the PEG propellant. In PCP propellant, however, the silane compounds not only made a severe cure problem but also deteriorated the mechanical property. In this study, TESPN as a silane compound was applied in PEG and PCP binder for finding above factors. The main reason was that the main chains of PCP were broken due to the trans-esterification reaction of ester groups in PCP and alchol which was produced by reacting silane compounds and moisture in the solution of liquid binder.

  • PDF

A Study on Mechanical Properties of Wood-Polymer Composites due to Environmental Characteristic (목재 고분자 복합재료의 환경 특성에 따른 기계적 물성연구)

  • Lee, Joong-Hee;Jeon, Sang-Jin;Heo, Seok-Bong;Kim, Hong-Gun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.91-94
    • /
    • 2005
  • Polypropylene as a matrix has been used for wood polymer composites(WPC). In preparing WPC, the coupling agent, Polypropylene grafted Maleic Anhydride(PP-G-MA) was used in order to obtain a good interfacial bonding force between matrix and fillers and dispersion of wood powders. In this study, the effects of wood powder contents and water absorption on the mechanical properties were experimentally investigated. The tensile strength and flexural strength of composites reached its peak value when the wood powder content was around 60 wt%. However, the peak value of the impact was observed about 30 wt% of wood powder content. The tensile strength and flexural strength increase with increasing the wood power contents. But the impact strength decrease with increasing the wood powder contents. The slight change was observed with the water absorption in the WPC. The optimal condition of the compositions such as Anti-oxidant and UV stabilizers for the outdoor application was suggested in this research.

  • PDF

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

Effect of Polycaprolactone on the Mechanical Properties of PEG/HMX Propellant (Polycaprolactone이 PEG/HMX 추진제의 기계적 성질에 미치는 영향)

  • 정병훈;홍명표;임유진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.62-69
    • /
    • 1998
  • Mechanical properties of polyethyleneglycol(PEG)/cyclo-tetramethylene tetranitramine(HMX) propellant were studied by adding polycaprolactone(PCP) and silane derivatives as coupling agent. Mechanical properties of the propellant were enhanced by increasing the content of PCP which was partially replaced with PEG. PCP/HMX propellant showed 17% increase in maximum tensile strength and 59% increase in elongation compared to those of PEG/HMX propellant. However, as the content of PCP was increased, the hydrolytic stability of this propellant was found to be deteriorated due to the ester group of PCP by measuring hardness drop of cured propellant and swell ratio difference of PEG/PCP binder stored at $40^{\cire}C$ and 90% relative humidity. Hardness of the PEG/PCP/HMX propellant was decreased with increasing triethoxysilyl propionitrile(TESPN) and dinitrosalicylic acid (DNSA) content from accelerated aging at $60^{\cire}C$.

  • PDF

Flame Retardancy of Cellulose Fabrics Treated with 3-(Hydroxyphenyl Phosphinyl) Propanoic Acid

  • Zhang, Lianping;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • 3-(Hydroxyphenyl phosphinyl) propanoic acid (HPPA) has been one of the most commonly used durable flame retardant agents for polyethylene terephthalate (PET) for many years. We intended to explore the application of HPPA to cellulose fabrics as formaldehyde-free phosphorus based flame retardants (FRs) through green chemistry process. The flame retardancy of the flame-retardant treated cellulose fabrics were characterized by using inductively coupled plasma spectroscopy (ICP) and limiting oxygen index (LOI). Structural changes of the treated cellulose fabrics were carried out by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. To enhance the flame retardancy of HPPA treated cellulose fibers, glycerol polyglycidyl ether (GPE), a crosslinking agent was employed. Both HPPA and GPE treated cotton fabric imparted an LOI value over 26.

Development of Novel Polymeric Sunscreen Agent

  • Hyo-Joong Kim;Hye
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.89-98
    • /
    • 1996
  • A novel polymeric sunscreen agent was developed. It was prepared by the coupling reaction of 2-ethylhexyl 4-hydroxycinnamate with poly vinylbenzyl chloride(PVBC, average MW 6,500). In this reaction the reactivity was mostly affected by catalyst. In the absence of catalyst the yield was approximately 55% and in the presence of tetrabutylammonium bromide the yield was about 65%, but in the presence of tetrabutylammonium iodide the yield was 100% to give a average molecular weight 20,000 polymeric sunscreen agent. There were no side reactions, and its structure and purity were confirmed by various analytical methods, such as NMR, IR, and so on. UV radiation absorption efficiency is more than 70% compared with that of octyl methoxycinnamate. The solubility in polar oil, for example C12-15 alkylbenzoate and caprylic/capric triglyceride, is more than 50%. It showed high stability in the time course of test including acceleration test. This polymer is safe to skin because of poor permeability to skin, no side products in the process of preparing, and easy elimination of excess starting materials.

  • PDF

Surface Modification of Flake-Shaped Inorganic Mica and Their Cool Paint Performances (판상형 무기소재인 Mica의 표면개질 및 차열페인트의 특성 평가)

  • Park, Jeong Min;Kim, Hee Jung;Yoo, Jung Whan
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.35-38
    • /
    • 2016
  • In this study, the mica used as a thermal-insulation material was modified with a silane coupling agent, octyltriethoxysilane (OTES), to improve its hydrophobicity. The modified mica was characterized using FT-IR spectrometer, water wettability test, and water contact angle measurement. The analysis exhibits that OTES for the modified mica sample was well bonded chemically and drastically enhanced the hydrophobicity. The reflectance observed as 73.9% (mica) and 86.4% (OTES/mica), respectively, for OTES/mica was improved about 12.5% before any modifications. Also the modified mica sample showed $7.2^{\circ}C$ decrease in the thermal-insulation performance of cool paints compared to that of using unmodified mica, indicating that the modification of mica with silane coupling agents could be effective in enhancing the thermal-insulation performance of the cool paint.

Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment (탄소섬유 표면처리에 따른 탄소섬유/폴리프로필렌 복합재료의 기계적 물성 평가)

  • Han, Song Hee;Oh, Hyun Ju;Kim, Seong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.791-796
    • /
    • 2013
  • In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XPS, SEM, and single-filament tensile test. The interlaminar shear strength (ILSS) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the ILSS of the plasma-treated specimen increased with the treatment time. The ILSS of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen.

A Study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification (역삼투 분리막의 표면개질을 이용한 내염소성 향상에 관한 연구)

  • Kim, Younggil;Kim, Nowon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.320-329
    • /
    • 2005
  • Polyamide membrane degradation by chlorine has been studied to improve membrane durability. In this study, it was found that the salt rejection was reduced rapidly and flux of the membrane was increased slowly far membrane treated under chlorine condition. In order to improve resistance to chlorine of the polyamide reverse osmosis membrane, fluorine-containing silane coupling agent (FSCA) was introduced to surface modification. Surface properties and chlorine resistance of silane modified membrane were compared with virgin membrane. It was found that the surface of silane modified membrane has dense structure according to FSCA concentration increasing. The results of surface analysis suggest that FSCA retrieved a severe change in the hydrophobicity and surface roughness. In addition, it appears that FSCA can enhance chlorine resistance due to the interaction of such substance with free radical chlorine.

Synthesis and Characterization of a Receptor-Targeting Contrast Agent

  • Yang, Taegyun;Park, Ji-Hyung;Lee, Seung-Cheol;Kim, Cheol-Su;Cho, Jee-Hyun;Lee, Chul-Hyun;Cheong, Chae-Joon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.1
    • /
    • pp.46-54
    • /
    • 2003
  • We synthesized a contrast agent for MRI that is capable of binding to the ABP-1 receptor and enhancing the contrast of the targeted cells. We used a lysine dendrimer (G=3)DTPA[Gd] as the contrast agent and synthesized a biotinylated polyclonal antibody for ABP-1 as the first antibody. Lysine dendrimers were prepared using the solid phase peptide synthesis method.$^3$ Amino-terminated lysine dendrimers were then coupled to DTPA using the anhydride method. Gd was complexed with the DTPA-lysine dendrimer in an acidic solution of 3 eq GdCl$_3$ to one of DTPA. The lysine dendrimer-DTPA[Gd] and avidin were conjugated in MES solution, pH 6.0, using EDC as the coupling reagent. The biotin-avidin system was used to link the polyclonal antibody and contrast agent. K562 cells were used for imaging.

  • PDF