• 제목/요약/키워드: Coupled Shell

검색결과 145건 처리시간 0.027초

유한 길이 구조물과 무한 길이 도파관 구조물의 임피던스 연성을 이용한 진동 해석 (Vibration Analysis for Infinite Length Waveguide Structures Connected with Finite Length Structures Using Impedance Coupling)

  • 유정수;이재홍;홍진숙;신구균
    • 한국음향학회지
    • /
    • 제34권5호
    • /
    • pp.360-370
    • /
    • 2015
  • 무한 길이를 가진 도파관 구조물에 유한 길이를 가진 구조물이 결합되어 있는 경우, 결합된 구조물의 응답을 수치해석으로 구하기 위해서는 파동 방법과 모드 방법을 함께 적용하여 해석하는 것이 필요하다. 본 논문에서는 무한 길이 도파관구조물에 대해서는 파수유한요소법을, 유한 길이 구조물에 대해서는 유한요소법을 적용하여 결합 지점에서의 각 하부 구조물 임피던스 또는 모빌리티를 구하고 이를 연성하여 전체 구조물의 응답을 해석하는 방법에 대하여 다루었다. 해석 대상 구조물로는 내부에 사각 평판 구조물이 네 꼭지점에서 결합되어 있는 무한 길이 원통형 실린더를 선정하였으며, 네 결합지점이 강결합 또는 탄성마운트로 결합된 경우에 대하여 살펴보았다. 본 연구를 통해 임피던스 연성을 통한 파동 방법(파수유한요소법)과 모드 방법(유한요소법)의 결합이 적용 가능함을 확인하였다.

전자상거래 환경하에서의 제초업체 판매 에이전트를 위한 가상생산 에이전트 (A Virtual Manufacturing Agent for Sales Agent of Manufacturers in EC Marketplace)

  • 최형림;박병주;김현수;이창호
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.1-15
    • /
    • 2001
  • 최근 인터넷의 급속한 확산에 따른 전자상거래의 활성화는 조직과 규모 면에서 열세인 중소기업들의 판로 확장 및 홍보를 위한 새로운 대안으로 인식되고 있다. 그러나, 전자상거래 환경은 비약적으로 성장하고 있지만, 여전히 국내 중소기업들은 인력 및 자금의 상대적인 열세로 이러한 환경변화에 효과적으로 대응치 못하고 있다. 본 논문은 이러한 문제를 해결하기 위한 노력의 일환으로, 인터넷 상의 판매 에이전트를 지원할 수 있는 가상생산 에이전트(Virtual Manufacturing Agent)의 개발에 관한 내용을 담고 있다. 제품의 흥보, 주문의 선택 및 수락 여부에 대한 결정은 생산라인의 상태와 매우 밀접한 관계에 있다. 주문의 수락과 주문 조건에 대한 협상을 위해서는 제조가능성 여부, 생산 부하 및 생산일정 등에 대한 정보가 필요하다. 본 논문에서는 중소제조업체의 판매활동을 인터넷상에서 가능하게 하는 판매에이전트가 요구하는 생산정보를 적시에 제공할 수 있는 가상생산 에이전트를 설계, 구현하였고, 이를 통하여 구현된 시스템을 사출금형제조업체의 생산과정과 주문처리과정을 통하여 검증하였다.

  • PDF

Effect of Dietary L-ascorbic Acid (L-AA) on Production Performance, Egg Quality Traits and Fertility in Japanese Quail (Coturnix japonica) at Low Ambient Temperature

  • Shit, N.;Singh, R.P.;Sastry, K.V.H.;Agarwal, R.;Singh, R.;Pandey, N.K.;Mohan, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권7호
    • /
    • pp.1009-1014
    • /
    • 2012
  • Environmental stress boosts the levels of stress hormones and accelerates energy expenditure which subsequently imbalance the body's homeostasis. L-ascorbic acid (L-AA) has been recognized to mitigate the negative impact of environmental stress on production performances in birds. The present investigation was carried out to elucidate the effect of different dietary levels of L-AA on production performance, egg quality traits and fertility in Japanese quail at low ambient temperature. Sixty matured females (15 wks) were equally divided into three groups (20/group) based on the different dietary levels of L-AA (0, 250 and 500 ppm) and coupled with an equal number of males (1:1) obtained from the same hatch. They were managed in uniform husbandry conditions without restriction of feed and water at 14 h photo-schedule. Except for feed efficiency, body weight change, feed consumption and hen-day egg production were recorded highest in 500 ppm L-AA supplemented groups. Among the all egg quality traits studied, only specific gravity, shell weight and thickness differed significantly (p<0.05) in the present study. Fertility was improved significantly ($p{\leq}0.01$) to a dose dependent manner of L-AA. The findings of the present study concluded that dietary L-AA can be a caring management practice at least in part to alleviate the adverse effect of cold induced stress on production performance in Japanese quail.

이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교 (Development of a Dynamic Model for Double-Effect LiBr-$H_2O$ Absorption Chillers and Comparison with Experimental Data.)

  • 신영기;서정아;조현욱;남상철;정진희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.109-114
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

  • PDF

XFINAS 계면요소와 고체요소를 이용한 콘크리트-강재 합성구조물의 비선형 거동해석 (Nonlinear Analysis of Steel-Concrete Composite Structures using XFINAS Interface and Solid Elements)

  • 김기두;수타스트라디트 송삭;박종화;박재균
    • 한국전산구조공학회논문집
    • /
    • 제23권3호
    • /
    • pp.267-274
    • /
    • 2010
  • 합성구조는 전체가 동일한 재료 특성을 가지는 구조와는 달리 서로 다른 특성 즉 강재와 콘크리트의 구조로 결합되어 있다. 따라서 실제 모델링 시 이러한 재료 특성을 반영하지 않으면 실제 거동을 예측할 수 없으므로 콘크리트와 강재 사이에 인터페이스 요소를 연결하여 강재와 콘크리트의 슬립을 예측할 수 있게 한다. 인터페이스 요소는 일반적으로 사용되는 구성방정식은 적합하지 않고 실제 부착 및 슬립을 고려한 비선형 구성 방정식을 사용하여야만 적절히 사용할 수 있다. 이 계면요소를 이용하여 판형 강재 박스와 콘크리트의 접촉면을 묘사하였다. 그리고 강재 박스의 휨-좌굴 거동을 묘사하기 위해서는 일반적인 8절점 적합 요소의 사용은 부적절하므로 판형 강재 박스는 보강 변형도(Enhanced Assumed Strain) 고체요소를 사용하여 휨거동을 묘사할 수 있게 하였다.

Fine Structure Effect of PdCo electrocatalyst for Oxygen Reduction Reaction Activity: Based on X-ray Absorption Spectroscopy Studies with Synchrotron Beam

  • Kim, Dae-Suk;Kim, Tae-Jun;Kim, Jun-Hyuk;Zeid, E. F. Abo;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.31-38
    • /
    • 2010
  • In this study, we have demonstrated the fine structure effect of PdCo electrocatalyst on oxygen reduction reaction activity with different alloy composition and heat-treatment time. In order to identify the intrinsic factors for the electrocatalytic activity, various X-ray analyses were used, including inductively coupled plasma-atomic emission spectrometer, transmission electron microscopy, X-ray diffractometer, and X-ray Absorption Spectroscopy technique. In particular, extended X-ray absorption fine structure was employed to extract the structural parameters required for understanding the atomic distribution and alloying extent, and to identify the corresponding simulated structures by using FEFF8 code and IFEFFIT software. The electrocatalytic activity of PdCo alloy nanoparticles for the oxygen reduction reaction was evaluated by using rotating disk electrode technique and correlated to the change in structural parameters. We have found that Pd-rich surface was formed on the Co core with increasing heating time over 5 hours. Such core shell structure of PdCo/C showed that a superior oxygen reduction reaction activity than pure Pd/C or alloy phase of PdCo/C electrocatalysts, because the adsorption energy of adsorbates was apparently reduced by lowering the dband center of the Pd skin due to a combination of the compressive strain effect and ligand effect.

이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교 (Development of a Dynamic Model for Double-Effect LiBr-$H_{2}O$ Absorption Chillers and Comparison with Experimental Data)

  • 신영기;서정아;조현욱;남상철;정진희
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.781-788
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles

  • Kurtinaitiene, Marija;Mazeika, Kestutis;Ramanavicius, Simonas;Pakstas, Vidas;Jagminas, Arunas
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.1-14
    • /
    • 2016
  • Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, $Fe_3O_4$, or maghemite, ${\gamma}-Fe_2O_3$, core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as $CoFe_2O_4$ and $MnFe_2O_4$, differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, $MnFe_2O_4$, Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of ${\leq}20nm$. Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), $M\ddot{o}ssbauer$ spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

Dynamic analysis of buildings considering the effect of masonry infills in the global structural stiffness

  • de Souza Bastos, Leonardo;Guerrero, Carolina Andrea Sanchez;Barile, Alan;da Silva, Jose Guilherme Santos
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.169-184
    • /
    • 2019
  • This research work presents a study that aims to assess the dynamic structural behaviour and also investigate the human comfort levels of a reinforced concrete building, when subjected to nondeterministic wind dynamic loadings, considering the effect of masonry infills on the global stiffness of the structural model. In general, the masonry fills most of the empty areas within the structural frames of the buildings. Although these masonry infills present structural stiffness, the common practice of engineers is to adopt them as static loads, disregarding the effect of the masonry infills on the global stiffness of the structural system. This way, in this study a numerical model based on sixteen-storey reinforced concrete building with 48 m high and dimensions of $14.20m{\times}15m$ was analysed. This way, static, modal and dynamic analyses were carried out in order to simulate the structural model based on two different strategies: no masonry infills and masonry infills simulated by shell finite elements. In this investigation, the wind action is considered as a nondeterministic process with unstable properties and also random characteristics. The fluctuating parcel of the wind is decomposed into a finite number of harmonic functions proportional to the structure resonant frequency with phase angles randomly determined. The nondeterministic dynamic analysis clearly demonstrates the relevance of a more realistic numerical modelling of the masonry infills, due to the modifications on the global structural stiffness of the building. The maximum displacements and peak accelerations values were reduced when the effect of the masonry infills (structural stiffness) were considered in the dynamic analysis. Finally, it can be concluded that the human comfort evaluation of the sixteen-storey reinforced concrete building can be altered in a favourable way to design.