• Title/Summary/Keyword: Coupled Model

Search Result 2,686, Processing Time 0.034 seconds

Buckling Enhancement of Column Strips with Piezoelectric Layer

  • Wang, Quan;Wang, Dajun
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • This paper discusses the enhancement of the buckling capacity of column strips by use of piezoelectric layer. The analytical model for obtaining the buckling capacity of the piezoelectric coupled column with general boundary conditions modelled with different types of springs applied at the ends of the column is derived the first time. Based on this proposed model, the buckling capacity of the column strips can be accurately predicted by solving an eigenvalue problem. The computational results show the great potential of the piezoelectric materials in enhancing the buckling capacity of the column strips. The optimal locations of the piezoelectric layer for higher buckling capacity are also obtained for the columns with. standard pinned-pinned, fixed-free, and fixed-pinned structures. In addition, the buckling capacity and the increase of buckling capacity are discussed for those columns with the general boundaries as well. This research may provide a benchmark for the buckling analysis of the piezoelectric coupled strips.

  • PDF

A Novel Stator Design of Synchronous Reluctance Motor by Loss & Efficiency Evaluations Related to Slot Numbers using Coupled Preisach Model & FEM (프라이자흐 모델이 결합된 유한요소법을 이용한 슬롯수 관련 손실, 효율 평가 수행에 따른 집중권선 동기형 릴럭턴스전동기의 고정자 설계)

  • Park Seong-June;Lee Mi-Jeong;Lee Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.917-919
    • /
    • 2004
  • This paper deals with the stator design solution of a synchronous reluctance motor (SynRM) with various slot number by loss & torque evaluations related to the slot open, teeth width using coupled Preisach modeling & FEM. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, slot open, teeth width variation, respectively

  • PDF

Characteristic Analysis of Synchronous Reluctance Motor Related to Slot Numbers and winding using Coupled Preisach Model & FEM (프라이자흐 모델이 결합된 유한요소법을 이용한 슬롯수, 권선법에 따른 동기형 릴럭턴스전동기의 특성해석)

  • Byun, Chan-Geun;Jang, Young-Jin;Lee, Mi-Jung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1012-1014
    • /
    • 2003
  • This paper deals with the characteristic Analysis of synchronous reluctance motors (SynRMs) using coupled Preisach modeling & FEM. The focus of this paper is the characteristic Analysis relative to Inductances and losses on the basis of stator slot number, winding in SynRMs. The coupled Finite Elements Analysis (FEA) & Preisach model has been used to evaluate the nonlinear solution. Comparisons arc given with characteristics of normal distributed winding SynRM and those according to stator slot number, winding in concentrated winding SynRM, respectively.

  • PDF

An empirical model for amplitude prediction on VIV-galloping instability of rectangular cylinders

  • Niu, Huawei;Zhou, Shuai;Chen, Zhengqing;Hua, Xugang
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.85-103
    • /
    • 2015
  • Aerodynamic forces of vortex-induced vibration and galloping are going to be coupled when their onset velocities are close to each other, which will induce the cross-wind amplitudes of the structures increased continuously with ever-increasing wind velocities. The main purpose of the present work is going to propose an empirical formula to predict the response amplitude of VIV-galloping interaction. Firstly, two typical mathematical models for the coupled oscillations, i.e., Tamura & Shimada model and Parkinson & Corless model are comparatively summarized. Then, the key parameter affecting response amplitude is determined through comparative numerical simulations with Tamura & Shimada model. For rectangular cylinders with the side ratio from 0.5 to 2.5, which are actually prone to develop the VIV and galloping induced interaction responses, an empirical amplitude prediction formula is proposed after regression analysis on comprehensively collected experimental data with the predetermined key parameter.

Model Development for the Nitrification-Denitrification Coupled Process

  • Lee, Mee-Sun;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.195-198
    • /
    • 2002
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code (Clement, 1997) describing the fate and transport nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed. The proposed nitrogen transformations and transport model showed very good match with results of a conceptual model. However, the model simulation results for the major reactive species should be tested for validation using experimental and field data.

  • PDF

Modeling for Soot Formation Coupled with Detailed Chemistry in Laminar Pressurized Non-premixed Flames (층류 고압 비예혼합 화염에서 상세화학반응과 결합된 매연입자 생성 모델링)

  • Kim, Taehoon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.139-140
    • /
    • 2012
  • In laminar non-premixed flame situation, the flamelet model is not suitable for simulating slow processor like soot and radiation. Thus in this study, we overcome this limitation by using the transient flamelet model. Also, for soot formation on laminar non-premixed flame, transient flamelet coupled with two-equation soot model has been adopted due to its inherent advantages in terms of accuracy and availability. Based on numerical results, the detailed discussion has been made for the precise structure and soot formation processes in the pressurized methane air flames.

  • PDF

A Study on the Temperature Distribution and Deformation of Case in Shrinkage Fit Process(II) - Deformation Measurement and Deformation Analysis Model - (열박음 공정이 케이스의 온도분포 및 변형에 미치는 영향(II) - 변형 계측 및 변형 해석 모델 정립 -)

  • 장경복;정진우;강성수;최규원;박찬우;조상명
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.492-498
    • /
    • 2001
  • In the previous study, temperature monitoring of case about shrinkage fit process was performed and heat transfer model was developed in detail by feedback and tuning among monitoring result, process investigation, and analysis result. The gap element in contact between case and core was effectively used in analysis model. In present study, following things are performed to solve deformation of case due to shrinkage fit process on the basis of previous result. Above all, mechanical material properties of case are measured by case specimen for deformation analysis considering weldment of case. Deformation of case before and after shrinkage fit process is measured, too. Three dimensional deformation model is developed by the comparison and inspection between these experimental data and analysis results. Deformation analysis is simulated with the result of heat transfer analysis, in other words, non-coupled analysis is used. Finally the countermeasure for deformation is brought up through those.

  • PDF

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

The development of On-line Model for the Prediction of Effective Strain Distribution by Non-dimensionalization on FEM Basis (유한요소법 기반의 무차원화를 이용한 판 유효 변형률 분포 예측 온라인 모델 개발)

  • Kim S. H.;Lee J. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.359-367
    • /
    • 2004
  • In this research on-line model for the prediction of the effective strain distribution in strip on finishing mill process is presented. To describe the effective strain distribution in strip, three guide points and a distribution fitting variable are used. On-line models to get these points and fitting variable non-dimensionalization method and least square method were used with FEM simulation results. The model is developed using strip only FEM simulation as reference sets and compared with roll coupled FEM simulation results as perturbed sets. The on-line model to describe effective strain distribution shows good agreement with coupled FEM analysis results.

  • PDF