• Title/Summary/Keyword: Couch

Search Result 142, Processing Time 0.028 seconds

The Dose Attenuation according to the Gantry Angle and the Photon Energy Using the Standard Exact Couch and the 6D Robotic Couch (Standard Exact Couch와 6D Robotic Couch를 이용한 광자선의 조사각에 따른 선량 감쇠에 대한 연구)

  • Kim, Tae Hyeong;Oh, Se An;Yea, Ji Woon;Park, Jae Won;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • The objective of this study is to increase the accuracy of dose transmission in radiation therapy using two types of treatment tables, standard exact couch (Varian 21EX, Varian Medical Systems, Milpitas, CA) and 6D robotic couch (Novalis, BrainLAB A.G., Heimstetten, Germany)). We examined the dose attenuation based on the two types of treatment tables and studied the dose of attenuation using the phase (In/Out) for the standard exact couch. We measured the relative dose according to the incident angle of a penetrative photon beam under a treatment table. The incident angle of the photon beam was from $0^{\circ}$ to $360^{\circ}$ in the increments of $5^{\circ}$. The reference angle was set to $0^{\circ}$. Furthermore, the relative dose of the 6D robotic couch was measured using 6 MV and 15 MV, and that of the standard exact couch was measured at the sliding rail position (In-Out) using 6 MV and 10 MV. In the case of the standard exact couch, the measured relative dose was 16.53% (rails at the "In position," $175^{\circ}$, 6 MV), 12.42% (rails at the "In position," $175^{\circ}$, 10 MV), 13.13% (rails at the "Out position," $175^{\circ}$, 6 MV), and 9.96% (rails at the "Out position," $175^{\circ}$, 10 MV). In the case of the 6D robotic couch, the measured relative dose was 6.82% ($130^{\circ}$, 6 MV) and 4.92% ($130^{\circ}$, 15 MV). The photon energies were surveyed at the same incident angle. The dose attenuation for an energy of 10 MV was 4~5% lower than that for 6 MV. This indicated that the higher photon energy, lesser is the attenuation. The results of this study indicated that the attenuation rate for the 6D robotic couch was confirmed to be 1% larger than that for the standard exact couch at 6 MV and $180^{\circ}$. In the case of the standard exact couch, the dose attenuation was found to change rapidly in accordance with the phase ("In position" and "Out position") of the sliding rail.

Study of the CatcherTM Couch's Usefulness (토모치료기 CatcherTM Couch의 유용성에 대한 고찰)

  • Um, Ki Cheon;Lee, Chung Hwan;Jeon, Soo Dong;Song, Heung Kwon;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

An Empirical Approach to Dosimetric Effect of Carbon Fiber Couch for Flattening Filter Free Beam of Elekta LINAC

  • Ahn, Sohyun;Park, Kwangwoo;Kim, Jinsung;Lee, Ho;Yoon, Jeongmin;Lee, Eungman;Park, Sohyun;Park, Jeongeun;Kim, Juhye;Keum, Ki Chang
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.220-223
    • /
    • 2016
  • Generally, it is recommended that the dosimetric effect of carbon fiber couch should be considered especially for an intensity-modulated therapy with a large portion of monitor units from posterior angles. Even a flattening filter free (FFF) beam has been used for stereotactic body radiation therapy (SBRT), the effect of carbon fiber couch for FFF beam is not well known. This work is an effort to evaluate the dosimetric effect of carbon fiber couch for flattened and FFF beam of Elekta linac empirically. The absorbed doses were measured with Farmer type chamber and water-equivalent phantoms with and without couch. And differences of the absorbed doses between with and without couch defined as "couch effect". By comparing calculated dose in treatment planning system (TPS) with measured dose, the optimal density of couch was evaluated. Finally, differences on patient's skin dose and target dose by couch were evaluated in TPS. As a result, the couch effect for 6 and 10 MV flattened beam were -2.71% and -2.32%, respectively. These values were agreed with provided data by vendor within 0.5%. The couch effect for 6 and 10 MV FFF beam were -3.75% and -2.80%, respectively. The patient's skin dose was increased as 18.6% and target dose was decreased as 0.87%, respectively. It was realized that the couch effect of FFF beam was more severe than that of flattened beam. Patient's skin dose and target dose were changed by the couch effect.

Design and Evaluation of the Tabletop Made of Carbon Fiber for X-ray CT Scanner (카본 섬유를 이용한 엑스선 CT 스캐너용 Tabletop의 설계 및 평가)

  • Sung, Kum-Gil;Park, Myung-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.195-199
    • /
    • 2008
  • The carbon fiber has low x-ray absorption property and high stiffness. This is the reason why many CT(Computed Tomography) manufacturer use carbon fiber in couch tabletop for CT scanner. In this paper, we design and make the couch tabletop made of carbon fiber composite, and verify the validity in CT scanner. In designing the couch tabletop, to determine the aluminum equivalent thickness of couch tabletop, we evaluate X-ray the transmissivity of aluminum and carbon plate in 80-120kVp X-ray energy range. And we perform structural analysis and mechanical design using determined thickness of carbon sheet. In conclusion, it was evaluated that manufactured couch tabletop satisfies X-ray transmissivity and mechanical requirements in CT scanner.

  • PDF

Evaluation of the Usefulness of the Self-developed Kw-infrared Reflective Marker in Non-coplanar Treatment (비동일면 치료 시 자체 제작한 Kw-infrared Reflective Marker의 유용성 평가)

  • Kwon, Dong-Yeol;Ahn, Jong-Ho;Park, Young-Hwan;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: In radiotherapy that takes into account respiration using a RPM (Real time Position Management, Varian, USA) system, which can treat in consideration of the movement of tumor, infrared reflective markers supplied by manufacturers cannot obtain respiratory signal if the couch rotates at a certain angle or larger. In order to solve this problem, the author developed the 3D infrared reflective marker named 'Kw-marker' that can obtain respiratory signal at any angle, and evaluate its usefulness. Materials and Methods: In order to measure the stability of respiratory signal, we put the infrared reflective marker on the 3D moving phantom that can reproduce respiratory movement and acquired respiratory signal for 3 minutes under each of 3 conditions (A: $couch\;0^{\circ}$, a manufacturer's infrared reflective marker B: $couch\;0^{\circ}$, Kw-marker C: $couch\;90^{\circ}$, Kw-marker). By analyzing the respiratory signal using a breath analysis program (Labview Ver. 7.0), we obtained the peak value, valley value, standard deviation, variation value, and amplitude value. In order to examine the rotation error and moving range of the target, we placed a B.B phantom on the 3D moving phantom, and obtained images at a couch angle of $0^{\circ}$ and $90^{\circ}$ using OBI, and then acquired the X, Y and Z values (mm) of the ball bearing at the center of the B.B phantom. Results: According to the results of analyzing the respiratory signal, the standard deviation at the peak value was A: 0.002, B: 0.002 and C: 0.003, and the stability of respiration for amplitude was A: 0.15%, B: 0.14% and C:0.13%, showing that we could get respiratory signal stably by using the Kw-marker. When the couch rotated $couch\;90^{\circ}$, the mean rotation error of the ball bearing, namely, the target was X: -1.25 mm, Y: -0.45 mm and Z: +0.1 mm, which were within 1.3 mm on the average in all directions, and the difference in the moving range of the target was within 0.3 mm. Conclusion: When we obtained respiratory signal using the Kw-marker in non-coplanar treatment where the couch rotated, we could acquire respiratory signal stably and the Kw-marker was effective enough to substitute for the manufacturer's infrared reflective marker. When the rotation error and moving range of the target were measured, there was little difference, indicating that the displacement of the reflector movement in couch rotation is the cause of change in the scale and amplitude of respiratory signal. If the converted value of amplitude height according to couch angle is studied further and applied, it may be possible to perform non-coplanar phase-based gating treatment.

  • PDF

3D 치료시 Couch rotation에 의한 Isocenter 변화에 대한 고찰

  • 박용철;주상규;송기원;정천영
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.144-146
    • /
    • 2000
  • 삼차원 입체조형치료는 정상조직의 장해를 최소화하고 종양부위에 집중적으로 조사할 수 있는 장점을 가지고 있어 임상 적용범위가 넓어지고 있다. 일반적으로 정상조직의 장해를 줄이기 위해 다양한 방사선 조사방향이 사용되며 특히 비 동일면상에서의 조사가 많이 이루어진다. 따라서 couch 회전이 동반되며 couch는 선형가속기의 다른 기계적 오차보다 많은 오차를 유발할 수 있는 잠재적인 위험을 안고 있다. 저자는 이러한 오차의 정도를 파악하고 이를 개선할 수 있는 방법에 대해 알아보고자 했다. couch 회전에 따른 Isocenter의 변화를 평가하기 위해 3대(Primus, Simens, USA/CL600c & 2100c, Varian, USA)의 선형가속기를 이용하였으며 이중 1대의 장비에는 couch 회전시 오차를 줄이기 위해 고안된 couch 고정장치를 장착하였다. 환자가 테이블에 부하를 주지 않은 상태에서 회전을 실시하여 Isocenter의 변화를 측정하고 환자가 테이블에 누워있는 상황을 재현하기 위해 human phantom을 위치시킨 후 동일한 회전검사를 실시하여 각각의 오차를 비교 분석하였다. 각 실험은 10회씩 반복 측정하여 평균치를 얻었으며 오차의 분석은 AAPM 권고안인 오차중심의 반경으로 표현했다. 3대의 선형가속기를 이용하여 얻은 결과 테이블에 부하를 주지 않은 상태의 회전오차는 평균 2mm, 3.2mm, 2mm로 측정되었으며 휴먼 phantom을 올려놓고 부하를 준 상태에서의 오차는 평균 2.1mm, 4mm, 2.1 mm이였다. 또한 고정장치를 이용한 상태에서의 평균오차는 1.9mm로 나타났다. 삼차원 입체조형치료 시 couch 회전에 따른 Isocenter 오차는 장비의 종류 및 작업자의 사용방법에 따라 다르게 나타났으며 테이블의 부하가 클수록 많은 오차를 보였다. 또한 couch 고정장치를 부착한 장비에서의 결과치 만이 AAPM에서 권고하는 오차의 한계에(${\le}2mm$) 들어감을 알 수 있었다. 따라서 정기적인 QA가 필수적이며 Couch Locking System과 같이 오차를 줄일 수 있는 보조장치의 부착이 많은 도움을 줄 것으로 생각된다. 아울러 이러한 오차를 보정할 수 있는 방법이 강구되어야 할 것으로 사료된다.

  • PDF

Precision evaluation of the treatment that used coordinates confirmation of couch in case of two forgets adjoined. (Couch의 좌표 확인을 이용한 치료 위치 이동의 정확성 평가)

  • Seo Jeong-min;Jeong Cheon-young;Park Young-hwan;Song Ki-won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2003
  • I. Purpose Confirming an error to be able to break out in a method to move couch manually while operator sees the skin marks on patient in case of curing head who got 2 targets adjoined, so we analyze coordinates price of couch, evaluate reproducibility and precision of change movements between targets. II. Materials and Methods In radiotherapy, for confirming errors in manual movements by operators by exchanging between two targets to treat patient head, we read coordinates price(vertical, longitudinal, lateral three directions of couch) shown on a monitor of LINAC( CL 2100, Varian, USA) in order to evaluate accuracy about the length that moved in time for moving couch manually. After reading movement length of coordinates recorded in three directions of all treatment, we compared distance between targets recorded in RTP(Pinnacle, ADAC, USA) with reading coordinates price of couch, setting actually done the same patient for ten times, coordinates were recorded, treated for evaluating averages and degrees of errors and standard deviations. III. Results In method to confirm skin marks of patient by operators' view and to move couch manually, average standard deviations of movements between two targets are vertical 1.4mm, longitudinal 0.9mm, lateral 2.2mm in each direction. As for the error in straight dimension, it is about 3.6mm averages and 5.1mm maximum. The average of errors in each directions was vertical 1mm, longitudinal 0.7mm, lateral 2.7mm. The greatest error broke out in lateral direction with $25\%$ of all cases ; to exceed an error average. IV. Conclusions If operators moved manually couch for changing target points, errors about 3.6mm average degrees occur. It is important that operators confirm the errors prices of actual couch coordinates for asking a correct movement between the targets adjoined each other ; in case of treatment demanding high precision like 3D conformal therapy or IMRT. Therefore, if we apply couch coordinates confirmation to reproducibility and to precision evaluation of treatment, it's expected that we can execute high-quality radiotherapy.

  • PDF

Evaluation of VMAT Dose Accuracy According to Couch Rotation in Stereotactic Radiation Surgery of Metastatic Brain Cancer (전 이성 뇌 암의 정위 방사선수술에서 Couch 회전에 따른 VMAT의 선량 정확성 평가)

  • Na, Gwui Geum;Park, Byoung Suk;Cha, Woo Jung;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.117-125
    • /
    • 2021
  • Purpose: To purpose of this study is to find the correlation of the Set-up error according to the couch rotation and suggest additional margin setting for the GTV. Target and Method: Each scenario treatment plan was created by making the frequency of non-coplanar beams different among all beams. The set-up error value was measured by using the Exact System and the dose accuracy was evaluated by creating a re-treatment plan. Results: When the couch was rotated by 30°, 45°, 60°, and 90°, the mean of the X-axis values was measured to be 0.29 mm, 0.26 mm, 0.51 mm, and 0.08 mm, respectively. The mean of the Y-axis values was measured to be 0.75 mm, 0.5mm, 0.35 mm, and 0.29 mm, respectively. The mean of the Z-axis values was measured to be 0.5 mm, 0.28 mm, 0.22 mm, and 0.1 mm, respectively. There were dose reductions of 0.1%, 3.1%, 1.9% in D99 for 1-NC VMAT, 2-NC VMAT, and 3-NC VMAT, respectively. Conclusion: When treating with 50% or more of non-coplanar beams among total beams, image verification is required. And it is considered to make the treatment plan by adding a 1.5 mm margin to the GTV.

Consideration about LINAC movable range by H&N patient immobilization device manufacture (두경부환자 고정기구제작을 통한치료기 가동범위에 관한 고찰)

  • Jung DoHyung;Shim JinSeop;Youm DuSeok;Choi GyeSuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.63-67
    • /
    • 2004
  • Purpose : New therapy technique appeared in 3D-CRT or IMRT according to a radiation treatment developing and worked. Such treatment technique requires the radiation irradiation of many direction. It has many restriction at radiation irradiation of many direction to the linear acceleration deception of now actually. Consequently We make new fix device and measure consequently the improvement of the activate range. Method and Material : We upload the fix device on a linear accelerator Couch. We fixed Gantry at 45, 90, 135 and Couch is spin and measure the clearance of the equipment. Couch is fixed at 0 45 90 and measures the clearance of Gantry. We upload the Extended head holder(EHH) on a linear accelerator Couch. and We measure with the experiment of the front. Result : The action range did not have big difference to increase Gantry45. but The activate range of Couch increases the angle in Gantry 90 and Gantry 135 when it uses EHH. The activate range of Gantry increases the angle in Couch 45 when it uses EHH. We showed good activate situation all in Couch 0 and Couch 90. The utility of EHH could keep a behind radiation diminution. Conclusion : The radiation irradiation of many direction comes to be possible the utility of the fix instrument(EHH). The safety space between the patient and equipment or between equipment and equipment increased the utility of the fix device. Also, The manufacture is possible imports to rather cheap price. and We could bring the frugality of the treatment expendable supplies.

  • PDF