문제의 제약조건을 명확히 표현하고 휴리스틱 탐색에 의하여 스케쥴링을 형성하는 제약조건 중심의 스케쥴링 기법은 실세계의 스케쥴링 문제에 성공적으로 적용되어 왔다. 하지만, 기존의 제약조건 중심의 스케쥴링 연구에서 스케쥴링의 목적을 표현하고 최적화하는데 관련된 연구는 부족한 상황이다. 특히 비용 목적함수는 다양한 비즈니스 계획의 효과를 분석하는 기업의사결정에서 매우 중요 하다고 평가된다. 이 연구의 목적은 자원 용량이나 일시적인 제약조건을 만족하면서 지연비용 및 재고비용을 포함한 스케쥴링의 전체 비용을 명확하게 표현하고 최적화하는 것이다. 비용기반 스케쥴링 프레임워크에서, 동일한 작업 내에 일시적인 제약조건을 만들어 가면서 비용함수를 개선해 나가는 비용 전파 알고리즘을 제시하였다.
A dynamic range compression algorithm using Markov random field (MRF) modeling to display high dynamic range (HDR) images on low dynamic range (LDR) devices is proposed in this work. The proposed algorithm separates foreground objects from the background using the edge information, and then compresses the color differences across the edges based on the MRF modeling. By minimizing a cost function using belief propagation, the proposed algorithm can provide an effective LDR image. Simulation results show that the proposed algorithm provides good results.
현실세계의 복잡한 스케줄링 문제를 해결하기 위하여 AI기반의 비용기반 휴리스틱 방법들이 많이 제시되어 왔다. 하지만 다양한 작업(job)을 대상으로 하는 작업간 비용 전파 알고리즘(CPA)에 관한 연구는 부족한 상황이다. 그러한 CPA없이 스케줄링을 한다는 것은 지역적이고 불충분한 정보에 기반하므로 전체 비용을 최소화 하는 목적을 달성하는데 많은 어려움이 있었다. 전체 비용을 최소화 하기 위하여는 작업내 CPA와 작업간 CPA, 두 종류의 CPA가 필요하다. 작업내에서 변화가 생긴 비용에 관한 정보는 작업간 CPA를 통하여 연결된 이웃 작업으로 전파된다. 작업내 CPA는 이전 연구 [7] 주제이고, 이번 연구에서는 작업간 CPA와 이러한 비용 정보를 기반으로 전체 비용을 최소화 하는 비용기반 휴리스틱 스케줄링 기법을 제안한다. 즉, 이번 연구에서는 탐색 과정에서 각 activity의 비용 함수를 만들고 개선하는 작업간 CPA를 개발하고, 비용 정보를 일시적인 제약조건하의 전체 네트워크에 전파하는 방법을 개발하였다. 이러한 비용 전파 알고리듬을 이용함으로써 전체 스케줄링 비용을 최소화하는 다양한 비용기반 휴리스틱 기법들을 제시하였다.
In the Grid Database, some replicas will have more requests from the clients than others. A fast consistency algorithm has been presented to satisfy the high demand nodes in a shorter period of time. But it has poor performance in multiple regions of high demand for forming the island of locally consistent replicas. Then, a leader election method is proposed, whereas it needs much additional cost for periodic leader election, information storage, and message passing, Also, false leader can be created. In this paper, we propose a tree-based algorithm for replica update propagation. Leader replicas with high demand are considered as the roots of trees which are interconnected. All the other replicas are sorted and considered as nodes of the trees. Once an update occurs at any replica, it need be transmitted to the leader replicas first. Every node that receives the update propagates it to its children in the tree. The update propagation is optimized by cost reduction for fixed propagation schedule. And it is also flexible for the dynamic model in which the demand conditions change with time.
이 논문은 진화 프로그래밍과 개선된 역전파 알고리즘을 이용한 에지 검출 방법을 제안한다. 진화 프로그래밍은 알고리즘의 성능저하와 계산비용을 고려하여 교차 연산은 수행하지 않고, 선택연산자와 돌연변이 연산자를 사용한다. 개선된 역전파 알고리즘은 학습단계에서 연결강도를 변화시킬 때 이전학습단계의 연결강도를 보조적으로 활용하는 방법이다. 이 개선된 역전파 알고리즘은 학습률 $\alpha$를 작은값으로 설정하기 때문에 각 학습단계에서의 연결강도 변화량이 기존의 방법에 비해 상대적으로 줄어들게 되어 학습이 느려지는 문제점을 해결하였다. 실험결과 학습시간과 검출률에 있어서 GA-BP(GA : Genetic Algorithm BP : Back-Propagation)를 이용한 방법보다 제안한 EP-MBP(EP : Evolutionary Programming, MBP :Momentum Back-Propagation)를 이용하여 학습시킨 방법이 학습시간의 단축과 효율적인 에지 검출 결과를 얻을 수 있었다.
본 논문은 영상 완성(image completion)을 위해 계층적으로 적용되는 새로운 에너지 최적화 방식을 제안한다. 영상 완성의 목적은 영상의 특정 영역이 지워진 상태에서, 그 지워진 부분을 나머지 부분과 시각적으로 어울리도록 완성시키는 기법을 말한다. 본 논문에서는 전역적 특징의 탐지, 주변 환경 변화에 대한 유연성, 계산비용의 감소, 영상 인페인팅과 같은 관련기법들로의 확장성 문제들을 다룰 수 있도록 마르코프 랜덤 필드(Markov Random Field)로 모델링 된 예제 기반 방식(exampler-based mehtod) 접근법을 택한다. 그리고 MRF에서의 에너지 최적화를 위해 BP 알고리즘(Belief Propagation Algorithm)의 변형인 우선순위 BP 알고리즘(Priority-Belief Propagation Algorithm)을 적용하였다. 본 논문에서 제안한 계층적 우선순위 BP 알고리즘(Hierarchical Priority-Belief Propagation Algorithm)은 MRF의 정점의 수를 줄이고 메시지를 계층적으로 전파한다. 이렇게 계층적 우선순위 BP 알고리즘을 영상 완성에 적용하여 여러 영상들에서 바람직한 결과를 얻었다.
자료 복제는 분산 시스템과 데이터베이스 시스템에서 가용성과 성능을 향상시켜 주지만, 자료를 갱신할 때 일관성을 엄격하게 유지하는 것은 쉽지 않다. 기존 알고리즘들은 엄격하게 일관성을 유지하지만, 비용이 많이 들며 시간이 지연된다는 문제점이 있다. 본 논문에서는 원본 자료에 대해서 즉시 갱신을 허락하고 다른 복사본들에 대해서는 지연 갱신을 전파하는 혼합 갱신 전파 알고리즘을 소개한다. 혼합 갱신 전파 알고리즘은 또한 소유권에 있어서 그룹 갱신을 허락한다. 이 알고리즘은 그룹 갱신 일관성을 제어하기 위해 복제 버전을 관리한다. 그룹의 소유권을 가지고 즉시 갱신과 지연 갱신을 결합함으로써 일관성과 성능이 향상된다. 응용과 실행 환경에 따른 트랜잭션 처리량과 응답시간의 향상을 모의실험을 통해 보여준다.
For effective part modifications which is necessary in the design process frequently, variational geometric modeling with constraint management being used in a wide. Most variational geometric modeling methods, however, manage just the constraints about sketch elements used for generation of primitives. Thus, not only constraint propagation but also re-build of various modeling operations stored in the modeling history is necessary iota part geometry modifications. Especially, re-build of high-cost Boolean operations is apt to deteriorate overall modeling efficiency abruptly. Therefore, in this paper we proposed an algorithm that can handle all geometric entities of the part directly. For this purpose, we introduced eight type geometric constraints to the various geometric calculations about all geometric entities in sweepings and Boolean operations as well as the existing constraints of the sketch elements. The algorithm has a merit of rapid part geometric modifications through only constraint propagation without rebuild of modeling operations which are necessary in the existing variational geometric modeling method.
일반적 모델 기반의 분산 교착상태 문제를 해결하기 위한 대부분의 알고리즘들은 diffusing computation이라는 기법을 이용하였는데 이 기법의 주된 특징은 PROBE를 전파하고 그에 따른 응답 메시지에 교착상태 발견에 필요한 정보를 전달하는 것이다. 신속한 교착상태의 발견은 매우 중요하기 때문에 본 연구에서는 응답 메시지 대신 PROBE 상에 교착상태 발견을 위한 정보를 전달하게 한다. 이는 응답 메시지의 역전송 과정을 불필요하게 하기 때문에 기존 알고리즘에 비해 시간을 거의 두 배로 단축시키는 결과를 가져온다. 또한, 기존 알고리즘은 단지 알고리즘이 한번만 실행되는 경우를 고려하였으나 본 연구에서 제시한 알고리즘은 동시 수행하는 경우를 효율적으로 처리하여, 교착상태를 발견하는 시간을 더욱 단축시킬 수 있다. 제안된 알고리즘의 성능은 시뮬레이션을 통하여 타 알고리즘들과 비교하였다.
Network-on-Chip (NoC) 이 오프칩 네트워크 기반의 기존 병렬처리 시스템과 가장 크게 다른 점은 데이터 패킷 라우팅을 중앙 제어 방식(Centralized control scheme)으로 수행한다는 점이다. 이러한 환경에서 Best-effort 패킷 라우팅 문제는 데이터 패킷이 해당 코어에 도달 및 처리되는 시간을 Cost 로 하는 실시간 최소화 할당 문제(Assignment problem)가 된다. 본 논문에서는 할당 문제의 선형 대수 방정식에 대한 대표적인 연산 복잡도 저감 알고리즘인 헝가리안 알고리즘을 하드웨어 가속기 형태로 구현하였다. TSMC 0.18um 표준 셀라이브러리를 이용하여 논리 합성한 결과 헝가리안 알고리즘의 연산과정을 그대로 구현한 하드웨어 회로보다 Cost 분포에 대한 Case 분석을 통하여 구현한 것이 면적은 약 16%, Propagation delay는 약 52% 감소한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.