• 제목/요약/키워드: Corynebacterium glutamicum glutamicum

검색결과 143건 처리시간 0.024초

Isolation and Analysis of the argG Gene Encoding Argininosuccinate Synthetase from Corynebacterium glutamicum

  • Ko, Soon-Young;Kim, Sei-Hyun;Lee, Heung-Shick;Lee, Myeong-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.949-954
    • /
    • 2003
  • The argG gene of Corynebacterium glutamicum encoding argininosuccinate synthetase (EC6345) was cloned and sequenced. The gene was cloned by heterologous complementation of an Escherichia coli arginine auxotrophic mutant (argG/sup -/). The cloned DNA fragment also complements E. coli argD, argF, and argH mutants, suggesting a clustered organization of the genes in the chromosome. The coding region of the argG gene is 1,206 nucleotides long with a deduced molecular weight of about 44 kDa, comparable with the predicted size of the expressed protein on the SDS-PAGE. Computer analysis revealed that the amino acid sequence of the argG gene product had a high similarity to that of Mycobacterium tuberculosis and Streptomyces clavuligerus. Two conserved sequence motifs within the ArgG appear to be ATP-binding sites which correspond to 2 of the 3 conserved regions found in sequences of all known argininosuccinate synthetases.

Deregulation of Aspartokinase by Single Nucleotide Exchange Leads to Global Flux Rearrangement in the Central Metabolism of Corynebacterium glutamicum

  • Kim Hyung-Min;Heinzle Elmar;Wittmann Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1174-1179
    • /
    • 2006
  • The wild-type Corynebacterium glutamicum ATIC 13032 and Corynebacterium glutamicum ATTC 13032 lysC S301Y, exhibiting a deregulated aspartokinase, were compared concerning growth, lysine production, and intracellular carbon fluxes. Both strains differ by only one single nucleotide over the whole genome. In comparison to the wild-type, the mutant showed significant production of lysine with a molar yield of 0.087 mol (mol glucose$^{-1}$) whereas the biomass yield was reduced. The deregulation of aspartokinase further led to a global rearrangement of carbon flux throughout the whole central metabolism. This involved an increased flux through the pentose phosphate pathway (PPP) and an increased flux through anaplerosis. Because of this, the mutant revealed an enhanced supply of NADPH and oxaloacetate required for lysine biosynthesis. Additionally, the lumped flux through phosphoenolpyruvate carboxykinase and malic enzyme, withdrawing oxaloacetate back to the glycolysis and therefore detrimental for lysine production, was increased. The reason for this might be a contribution of malic enzyme to NADPH supply in the mutant in the mutant. The observed complex changes are remarkable, because they are due to the minimum genetic modification possible, the exchange of only one single nucleotide.

Regulation of Enzymes Involved in Methionine Biosynthesis in Corynebacterium glutamicum

  • Yeom, Hye-Jin;Hwang, Byung-Joon;Lee, Myong-Sok;Kim, Youn-Hee;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.373-378
    • /
    • 2004
  • The regulatory mechanism of methionine biosynthesis in Corynebacterium glutamicum was analyzed at the protein arid gene expression level. O-Acetylhomoserine sulfhydraylase (encoded by metY) was inhibited by 10 mM methionine to a residual activity of 10% level, whereas no such inhibition was found with cystathionine $\gamma$-synthase (encoded by metB) and cystathionine $\beta$-lyase (encoded by metC). The enzymatic activity of homoserine acetyltransferase (encoded by metX) was repressed to a residual activity of 25% level by 10 mM methionine which was added to the growth medium. Cystathionine $\gamma$-synthase and cystathionine $\beta$-lyase were also repressed by 10 mM methionine, but only to a residual activity of 50-70% level. O-Acetylhomoserine sulfhydrylase was very sensitive to repression by 10 mM methionine, showing residual activity of 13%. In addition, homoserine acetyltransferase was also repressed by 10 mM cysteine to 50% of its original activity. No repression of the enzymes by S-adenosyl methionine was observed. The pattern of repression by methionine indicated that the metB and aecD genes might be regulated by a common mechanism, while the metA and metY genes are differently regulated.

Elucidation of the Regulation of Ethanol Catabolic Genes and ptsG Using a glxR and Adenylate Cyclase Gene (cyaB) Deletion Mutants of Corynebacterium glutamicum ATCC 13032

  • Subhadra, Bindu;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1683-1690
    • /
    • 2013
  • The cyclic AMP receptor protein (CRP) homolog, GlxR, controls the expression of several genes involved in the regulation of diverse physiological processes in Corynebacterium glutamicum. In silico analysis has revealed the presence of glxR binding sites upstream of genes ptsG, adhA, and ald, encoding glucose-specific phosphotransferase system protein, alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH), respectively. However, the involvement of the GlxR-cAMP complex on the expression of these genes has been explored only in vitro. In this study, the expressions of ptsG, adhA, and ald were analyzed in detail using an adenylate cyclase gene (cyaB) deletion mutant and glxR deletion mutant. The specific activities of ADH and ALDH were increased in both the mutants in glucose and glucose plus ethanol media, in contrast to the wild type. In accordance, the promoter activities of adhA and ald were derepressed in the cyaB mutant, indicating that glxR acts as a repressor of adhA. Similarly, both the mutants exhibited derepression of ptsG regardless of the carbon source. These results confirm the involvement of GlxR on the expression of important carbon metabolic genes; adhA, ald, and ptsG.

Cloning and Expression of the Gene Encoding Mannose Enzyme II of the Corynebacterium glutamicum Phosphoenolpyruvate-Dependent Phosphotransferase System in Escherichia coli

  • Lee, Jung-Kee;Sung, Moon-Hee;Yoon, Ki-Hong;Pan, Jae-Gu;Yu, Ju-Hyun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 1993
  • The gene for mannose enzyme II of phosphoenolpyruvate-dependent phosphotransferase system from Corynebacterium glutamicum KCTC 1445 was cloned into Escherichia coli ZSC113 using plasmid pBR 322. The recombinant plasmid, designated pCTS3, contained 2.2 kb DNA fragment, and the physical map of the cloned DNA fragment was determined. The E. coli ptsM ptsG mutant transformed with pCTS3 restored glucose and mannose fermentation ability, and grew well on these sugars as the sole carbon source in the minimal medium. The transform ant harboring pCTS3 showed a PTS-mediated repression of growth on maltose by mannose analogue, 2-deoxyglucose. The specificity of the response to 2DG therefore indicates that the cloned DNA fragment carries mannose enzyme II gene.

  • PDF

Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum

  • Park, Eunhwi;Kim, Hye-Jin;Seo, Seung-Yeul;Lee, Han-Na;Choi, Si-Sun;Lee, Sang Joung;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1305-1310
    • /
    • 2021
  • Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.

초산을 이용한 글루타민산의 발효생산에 관한 연구 제 1보 글루타민산 생산균주의 분리 및 동정 (Studies on the Bacterial Production of L-Glutamate from Acetate Part I. Screening and Identification of L-Glutamate Producing Bacteria.)

  • 하덕모;노완섭
    • 한국미생물·생명공학회지
    • /
    • 제2권2호
    • /
    • pp.103-109
    • /
    • 1974
  • 전국 각지대의 279개소의 토양시료로 부터 초산자화성세균 383균주를 분리하였으며 이들 초산자화성세균중 L-GA생성 능이 우수한 5균주를 선정하고 균학적성질을 조사하여 Brebacterium flavum nov. sp. D1005B, Corynebacterium glutamicum nov. sp. D1025A, Brevibacterium. flavum nov. sp. D2209B, Corynebacterium acetoacidophilum nov. sp. D2212B 및 Corynebacterium acetoacidophilum nov. sp. D2349A로 동정 명명하였다

  • PDF

Expression Analysis of the csp-like Genes from Corynebacterium glutamicum Encoding Homologs of the Escherichia coli Major Cold-Shock Protein CspA

  • Kim, Wan-Soo;Park, Soo-Dong;Lee, Seok-Myung;Kim, Youn-Hee;Kim, Pil;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1353-1360
    • /
    • 2007
  • Three csp-like genes were identified in the Corynebacterium glutamicum genome and designated cspA, cspB, and cspA2. The genes cspA and cspA2 encode proteins, comprising of 67 amino acid residues, respectively. They share 83% identity with each other. Identity of those proteins with Escherichia coli Csp proteins was near 50%. The cspB gene encodes a protein composed of 127 amino acids, which has 40% and 35% sequence identity with CspA and CspA2, respectively, especially at its N-terminal region. Analysis of the gene expression profiles was done using transcriptional cat fusion, which identified not only active expression of the three genes at the physiological growth temperature of $30^{\circ}C$ but also growth phase-dependent expression with the highest activity at late log phase. The promoters of cspA and cspA2 were more active than that of cspB. The expression of the two genes increased by 30% after a temperature downshift to $15^{\circ}C$, and such stimulation was more evident in the late growth phase. In addition, the cspA gene appeared to show DNA-binding activity in vivo, and the activity increased at lower temperatures. Interestingly, the presence of cspA in multicopy hindered the growth of the host C. glutamicum cells at $20^{\circ}C$, but not at $30^{\circ}C$. Altogether, these data suggest that cspA, cspB, and cspA2 perform functions related to cold shock as well as normal cellular physiology. Moreover, CspA and its ortholog CspA2 may perform additional functions as a transcriptional regulator.

Dynamic Respiratory Measurements of Corynebacterium glutamicum using Membrane Mass Spectormetry

  • Wittmann.Christoph;Yang, Tae-Hoon;Irene Kochems;Elmar Heinzle
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.40-49
    • /
    • 2001
  • The present work presents a novel approach for the dynamic quantification of respiration rates on a small scale by using lysine-producing Corynebacterium glutamicum ATCC 21253. Cells sampeld from batch cultures at different times were incubated ina 12-ml scale bioreactor equipped with a membrane mass spectrometer. Under dynamic conditions, gas exchange across the gas-liquid phase, specific respiration rates, and RQ values were precisely measured. For this purpose, suitable mass balances were formulated. The transport coefficients for $O_2$ and $CO_2$, crucial for calculating the respiration activity, were determined as $k_La_{O2}=9.18h^{-1}$ and $k_La_{CO2}=5.10h^{-1}$ at 400 rpm. The application of the proposed method to batch cultures of C. glutamicum ATCC 21253 revealed the maximum specific respiration rates of $q_{O2}=8.4\;mmol\;g^{-1}h^{-1}\;and\;q_{CO2}=8.7\;mmol\;g^{-1}h^{-1}$ in the middle of the exponential growth phase after 5 h of cultivation. When the cells changed from growth to lysine production due to the depletion of the essential amino acids theonine, methionine, and leucine, $q_{O2}\;and\;q_{CO2}$ decreased significantly and RQ increased. The respiration data exhibited an excellent agreement with previous cultivations of the strain [13]. This confirms the potential of the developed approach to realistically reflect the metabolic activities of cells at their point of sampling. The short-term influence of added threonine, methionine, and leucine was highest during the shift from growth to lysine production, where $q_{O2}\;and\;q_{CO2}$ increased 50% within one minute after the pulse addition of these compounds. Non-growing, yet lysine-producing cells taken from the end of the batch cultivation revealed no metabolic stimulation with the addition of threonine, methionine, and leucine.

  • PDF

Heme Derived from Corynebacterium glutamicum: A Potential Iron Additive for Swine and an Electron Carrier Additive for Lactic Acid Bacterial Culture

  • Choi, Su-In;Park, Jihoon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.500-506
    • /
    • 2017
  • To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum-synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis, Lactobacillus rhamosus, and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at $4^{\circ}C$ with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.