References
- Kwon SJ, Petri R, DeBoer AL, Schmidt-Dannert C. 2004. A high-throughput screen for porphyrin metal chelatases: application to the directed evolution of ferrochelatases for metalloporphyrin biosynthesis. Chembiochem 5: 1069-1074. https://doi.org/10.1002/cbic.200400051
- Anzaldi LL, Skaar EP. 2010. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78: 4977-4989. https://doi.org/10.1128/IAI.00613-10
- Wakeman CA, Stauff DL, Zhang Y, Skaar EP. 2014. Differential activation of Staphylococcus aureus heme detoxification machinery by heme analogues. J. Bacteriol. 196: 1335-1342. https://doi.org/10.1128/JB.01067-13
- Zhang J, Kang Z, Chen J, Du G. 2015. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5: 8584. https://doi.org/10.1038/srep08584
- Pranawidjaja S, Choi SI, Lay BW, Kim P. 2015. Analysis of heme biosynthetic pathways in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 25: 880-886. https://doi.org/10.4014/jmb.1411.11050
- Hallberg L, Bjorn-Rasmussen E, Howard L, Rossander L. 1979. Dietary heme iron absorption. A discussion of possible mechanisms for the absorption-promoting effect of meat and for the regulation of iron absorption. Scand. J. Gastroenterol. 14: 769-779. https://doi.org/10.3109/00365527909181403
- Frykman E, Bystrom M, Jansson U, Edberg A, Hansen T. 1994. Side effects of iron supplements in blood donors: superior tolerance of heme iron. J. Lab. Clin. Med. 123: 561-564.
- Denic S, Agarwal MM. 2007. Nutritional iron deficiency: an evolutionary perspective. Nutrition 23: 603-614. https://doi.org/10.1016/j.nut.2007.05.002
- Hoppe M, Brun B, Larsson MP, Moraeus L, Hulthen L. 2013. Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition 29: 89-95. https://doi.org/10.1016/j.nut.2012.04.013
- Kwon OH, Kim S, Hahm DH, Lee SY, Kim P. 2009. Potential application of the recombinant Escherichia colisynthesized heme as a bioavailable iron source. J. Microbiol. Biotechnol. 19: 604-609.
- Lee JY, Na YA, Kim E, Lee HS, Kim P. 2016. The actinobacterium Corynebacterium glutamicum, an industrial workhorse. J. Microbiol. Biotechnol. 26: 807-822. https://doi.org/10.4014/jmb.1601.01053
- Kwon YD, Lee SY, Kim P. 2008. A physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase. Biosci. Biotechnol. Biochem. 72: 1138-1141. https://doi.org/10.1271/bbb.70831
- Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW. 2012. Diseases of Swine, pp. 199. 10th Ed. Wiley-Blackwell, New York.
- Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, et al. 2011. Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotechnol. 22: 143-149. https://doi.org/10.1016/j.copbio.2010.12.001
- Brooijmans R, Smit B, Santos F, van Riel J, de Vos WM, Hugenholtz J. 2009. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Fact. 8: 28. https://doi.org/10.1186/1475-2859-8-28
- Lee JY, Seo J, Kim ES, Lee HS, Kim P. 2013. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett. 35: 709-717. https://doi.org/10.1007/s10529-012-1135-9
- Park SD, Lee SN, Park IH, Choi JS, Jeong WK, Kim Y, Lee HS. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795.
- Lee JY, Lee HJ, Seo J, Kim ES, Lee HS, Kim P. 2014. Artificial oxidative stress-tolerant Corynebacterium glutamicum. AMB Express 4: 15. https://doi.org/10.1186/s13568-014-0015-1
- Gibson QH, Carey FG. 1975. Effect of pressure on the absorption spectrum of some heme compounds. Biochem. Biophys. Res. Commun. 67: 747-751. https://doi.org/10.1016/0006-291X(75)90876-1
- Volkova TN, Patrina NV. 1967. [On the ortho-phenanthroline method of determination of iron in blood serum]. Lab. Delo. 2: 97-98.
- Shin JA, Kwon YD, Kwon OH, Lee HS, Kim P. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5-aminolevulinate synthase. J. Microbiol. Biotechnol. 17: 1579-1584.
- Mike LA, Dutter BF, Stauff DL, Moore JL, Vitko NP, Aranmolate O, et al. 2013. Activation of heme biosynthesis by a small molecule that is toxic to fermenting Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 110: 8206-8211. https://doi.org/10.1073/pnas.1303674110
- Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, et al. 2001. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 183: 4509-4516. https://doi.org/10.1128/JB.183.15.4509-4516.2001
- Brooijmans RJ, Poolman B, Schuurman-Wolters GK, de Vos WM, Hugenholtz J. 2007. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J. Bacteriol. 189: 5203-5209. https://doi.org/10.1128/JB.00361-07
- Nunkaew T, Kantachote D, Kanzaki H, Nitoda T, Ritchie RJ. 2014. Effects of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electron. J. Biotechnol. DOI: 10.1016/j.ejbt.2013.12.004.
- Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M. 1997. New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci. Biotechnol. Biochem. 61: 2025-2028. https://doi.org/10.1271/bbb.61.2025
Cited by
- Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum vol.8, pp.None, 2017, https://doi.org/10.1038/s41598-018-32854-9
- Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439 vol.104, pp.2, 2017, https://doi.org/10.1007/s00253-019-10262-x