• 제목/요약/키워드: Corynebacterium glutamicum glutamicum

검색결과 143건 처리시간 0.026초

Whole Cell Bioconversion of Ricinoleic Acid to 12-Ketooleic Acid by Recombinant Corynebacterium glutamicum-Based Biocatalyst

  • Lee, Byeonghun;Lee, Saebom;Kim, Hyeonsoo;Jeong, Kijun;Park, Jinbyung;Park, Kyungmoon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.452-458
    • /
    • 2015
  • The biocatalytic efficiency of recombinant Corynebacterium glutamicum ATCC 13032 expressing the secondary alcohol dehydrogenase of Micrococcus luteus NCTC2665 was studied. Recombinant C. glutamicum converts ricinoleic acid to a product, identified by gas chromatography/mass spectrometry as 12-ketooleic acid (12-oxo-cis-9-octadecenoic acid). The effects of pH, reaction temperature, and non-ionic detergent on recombinant C. glutamiucm whole cell bioconversion were examined. The determined optimal conditions for production of 12-ketooleic acid are pH 8.0, 35℃, and 0.05 g/l Tween80. Under these conditions, recombinant C. glutamicum produces 3.3 mM 12-ketooleic acid, with a 72% (mol/mol) maximum conversion yield, and 1.1 g/l/h volumetric productivity in 2 h; and 3.9 mM 12-ketooleic acid, with a 74% (mol/mol) maximum conversion yield, and 0.69 g/l/h maximum volumetric productivity in 4 h of fermentation. This study constitutes the first report of significant production of 12-ketooleic acid using a recombinant Corynebacterium glutamicum-based biocatalyst.

Corynebacterium glutamicum의 Glutamate Dehydrogenase의 효소학적 성질과 Kinetics (Properties and Kinetics of Glutamate Dehydrogenase of Corynebacterium glutamicum)

  • Park, Mee-Sun;Park, Soon-Young;Kim, Sung-Jin;Min, Kyung-Hee
    • 한국미생물·생명공학회지
    • /
    • 제17권6호
    • /
    • pp.552-555
    • /
    • 1989
  • Corynebacterium glutamicum의 NADPH-specific glutamate dehydrogenase를 이용하여 NADPH, NH$_4$Cl, $\alpha$-ketoglutarate의 기질에 대한 kinetics를 고찰하였다. 이들의 kinetic constants를 측정함으로서 정반응에로의 효소반응 기작은 첫번째 효소와 반응하는 기질이 NADPH 임을 확인할 수 있었다. Glutamate dehydrogenase 활성의 조절을 위한 metabolites의 효과를 고찰하여 본 결과 malate와 citrate 만이 효소에 억제 효과를 나타내었으며, potassium chloride는 효소활성에 가장 많은 영향을 주었다.

  • PDF

Deinococcus radiodurans 유래 DR1558과 PprM에 의한 Corynebacterium glutamicum의 라이신 생산 향상 연구 (Enhancement of Lysine Production in Recombinant Corynebacterium glutamicum through Expression of Deinococcus radiodurans pprM and dr1558 Genes)

  • 김수미;임상용;박시재;주정찬;최종일
    • 한국미생물·생명공학회지
    • /
    • 제45권3호
    • /
    • pp.271-275
    • /
    • 2017
  • The expression of Deinococcus radiodurans dr1558 and pprM genes was examined for enhanced lysine production in recombinant Corynebacterium glutamicum. These genes are known to confer high tolerance to pH and osmotic shock in Escherichia coli. D. radiodurans dr1558 and pprM genes were expressed in C. glutamicum by using 6 synthetic promoters of different strengths, to evaluate the effect of expression efficiency on lysine production. Recombinant C. glutamicum expressing DR1558 under the L26 and I64 promoters showed higher lysine production than that expressing DR1558 under other promoters. Similarly, recombinant C. glutamicum expressing PprM under same promoters (L26 and I64) showed a higher increase in lysine production compared to that expressing PprM under other promoters. In the absence of $CaCO_3$ in the medium, the expression of DR1558 or PprM also increased lysine concentration in C. glutamicum depending on the promoter used. Together, these results suggest that genes involved in radiation tolerance in D. radiodurans can be used to enhance production of amino acids and their derivatives.

N-아세틸글루코사민 생산을 위한 코리네박테리움 글루타미컴의 대사공학 (Metabolic Engineering of Corynebacterium glutamicum for N-acetylglucosamine Production)

  • 김진연;김부연;문경호;이진호
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.78-86
    • /
    • 2019
  • 대사공학을 이용하여 N-아세틸글루코사민(GlcNAc)을 생산하는 재조합 Corynebacterium glutamicum을 개발하였다. 먼저 GlcNAc를 생산하는 기반균주를 제작하기 위하여, N-acetylglucosamine-6-phosphate deacetylase와 glucosamine-6-phosphate deaminase를 암호화하는 nagAB와 N-acetylmannosamine-6-phosphate epimerase를 암호화하는 nanE를 C. glutamicum ATCC 13032에서 순차적으로 결손하여, 최종적으로 KG208 균주를 제작하였다. 또한, glucosamine-6-phosphate synthase를 암호화하는 C. glutamicum 유래의 glmS와 glucosamine-6-phosphate N-acetyltransferase를 암호화하는 Saccharomyces cerevisiae 유래의 gna1을 각각 여러 발현벡터에 클로닝하였다. 여러 발현 조합의 플라스미드들 중에서 pCXI40-glmS와 pCEI40-gna1을 함유한 제조합균주 KG440은 삼각플라스크 발효에서 1.77 g/l의 GlcNAc와 0.63 g/l의 글루코사민을 생산하였다.

Characterization of the Cell-Surface Barriers to Plasmid Transformation in Corynebacterium glutamicum

  • Jang, Ki-Hyo;Paul J. Chambers;Chun, Uck-Han;Margare L.Britz
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.294-301
    • /
    • 2001
  • The effects of including glycine and isonicotinic acid hydrazide (INH) in the growth medium (Luria broth, LBG) on the subsequent lysozyme-imduced protoplast formation and transformation efficiency of Corynebacterium glutamicum were studied. The transformation efficiency of C. glutamicum AS019 increased up to 100-fold as the ocncentrationof glycine in the media increased from 0% to 5% (w/v), relative to cells grown in the absence of glycine. The presence of 5 mg/ml INH in the growth medium led to a further 10-fold increase in transformation efficiency. In addition, this transformation protocol was successfully applied to other strains of C. glutamicum. Both chemicals affected the mycolic acid attachment to the cell surface of C. glutamicum, when INH, the relative percentage of fatty acids of AS019 to the total lipids (mycolic acid plus fatty acids) decreased from 76.9% (in LBG) to 72.9% (in LBG-2% glycine) and 66.4% (in LBG-8 mg InG/ml), thereby suggeting that these chemicals also inhibit fatty acid synthesis.

  • PDF

Effect of Corynebacterium glutamicum on Livestock Material Burial Treatment

  • Kim, Bit-Na;Cho, Ho-Seong;Cha, Yougin;Park, Joon-Kyu;Kim, Geonha;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1404-1408
    • /
    • 2016
  • In recent years, foot-and-mouth disease has occurred in all parts of the world. The animals with the disease are buried in the ground; therefore, their concentration could affect ground or groundwater. Moreover, the complete degradation of carcasses is not a certainty, and their disposal is important to prevent humans, livestock, and the environment from being affected with the disease. The treatment of Corynebacterium glutamicum is a feasible method to reduce the risk of carcass decomposition affecting humans or the environment. Therefore, this study aimed to investigate the effect of C. glutamicum on the soil environment with a carcass. The composition of amino acids in the soil treated with C. glutamicum was generally higher than those in the untreated soil. Moreover, the plant root in the soil samples treated with C. glutamicum had 84.0% amino acids relative to the standard value and was similar to that of the control. The results of this study suggest the possibility to reduce the toxicity of a grave land containing animals with this disease.

매몰된 가축 사체의 부패 촉진 및 토양 비옥화를 위한 Corynebacterium glutamicum과 Bacillus licheniformis 처리 효과 (Effect of Corynebacterium glutamicum and Bacillus licheniformis on livestock material burial treatment)

  • 신유정;허건영;김주형;김빛나;민지호;조호성
    • 한국동물위생학회지
    • /
    • 제40권1호
    • /
    • pp.53-59
    • /
    • 2017
  • Foot and mouth disease (FMD) is highly infectious disease of cloven-hoofed animals, particularly problematic in cattle, sheep, pigs and goats for economic reasons. Last FMD outbreak in February, 2017 caused tremendous social and economical impacts. The Korean FMD policy aims to vaccinate intact animals and euthanize and bury infected animals to prevent the disease spread. However, there was a problem that the buried livestock did not decompose after several years. Therefore, the study was purposed to investigate the effect of Corynebacterium glutamicum and Bacillus licheniformis on the degradation of buried cow carcasses and on the soil condition; such as temperature, decomposition course of carcasses, composition of amino acids in the soil around carcasses, and plant root elongation to measure soil conditions. As a result, the composition of amino acids in the soil treated with C. glutamicum and B. licheniformis was generally higher than those in the untreated soil. Plant roots in soil treated with C. glutamicum and B. licheniformis grew longer than in non-treated soil. The results suggested that the toxic effect on a grave land buried with FMD infected livestock is reduced when treated with C. glutamicum and B. licheniformis in regard of odor reduction, promoted decaying process, and soil fertilization.

Corynebacterium glutamicum에 의한 L-Phenylalanine 생산의 동역학적 특성 (Kinetics of L-Phenylalanine Production by Corynebacterium glutamicum)

  • 김동일
    • KSBB Journal
    • /
    • 제5권2호
    • /
    • pp.125-131
    • /
    • 1990
  • 본 연구에서는 인공감미료 aspartamed의 원료인, I-phenylalanine을 생산하는 tyrosine auxotroph이며 다수의 아미노산 유도체의 저항성이 있는 변이주 Corynebact-erium glutamicum ATCC21674배양의 동특성을 조사하였다. 이 균주는 tyrosine이 존재하지 않아도 성장하고 또한 과량의 tyrosine을 함께 생성하는 것으로 보아 autotrophic mutant가 reversion된 revertant로 추정된다. 대수증식기에서의 비증식속도는 $0.087hr^-1$이었다. Phen-ylalanine 최대생성속도는 세포증식이 끝날 때에 얻어졌으며 세포량의 증가는 이산화탄소의 생산량의 증가와 비례함을 알 수 있었다. 이산화탄소 생성속도는 당소비속도와도 비례하므로 이를 이용하여 발효상태를 알 수 있는 유용성이 확인되었다.

  • PDF

$Ca^{2+}$ is Required to Make Functional Malate Synthase in Corynebacterium glutamicum

  • Kim, Hyung-Joon;Kim, Jae-Ho;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권6호
    • /
    • pp.435-437
    • /
    • 1997
  • The role of $Ca^{2+}$ in making functional malate synthase in Corynebacterium glutamicum was investigated using the cloned DNA coding for the enzyme. Introduction of cloned aceB into C. glutamicum overexpressed malate synthase as judged by SDS-PAGE. However, the increase in enzyme activity of the expressed malate synthase did not match the level of overexpression observed in SDS-PAGE. Addition of $Ca^{2+}$ to the growth medium specifically increased the activity. The malate synthase could be stained with ruthenium red in a $Ca^{2+}$-specific manner. This agrees with the previous observation which reported a potential $Ca^{2+}$-binding domain in the N-terminal region of the protein.

  • PDF

Nitrogen Control in Corynebacterium glutamicum: Proteins, Mechanisms, Signals

  • Burkovski, Burkovski;Andreas, Andreas
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.187-194
    • /
    • 2007
  • In order to utilize different nitrogen sources and to survive in a situation of nitrogen limitation, microorganisms have developed sophisticated mechanisms to adapt their metabolism to a changing nitrogen supply. In this communication, the recent knowledge of nitrogen regulation in the amino acid producer Corynebacterium glutamicum is summarized. The core adaptations of C. glutamicum to nitrogen limitation on the level of transcription are controlled by the global regulator AmtR. Further components of the signal pathway are GlnK, a $P_{II}-type$ signal transduction protein, and GlnD. Mechanisms involved in nitrogen control in C. glutamicum regulating gene expression and protein activity are repression of transcription, protein-complex formation, protein modification by adenylylation, change of intracellular localization, and proteolysis.