References
- Woo HM, Park JB. 2014. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. J. Biotechnol. 180: 43-51. https://doi.org/10.1016/j.jbiotec.2014.03.003
- Lee JK. 2010. Carbon metabolism and its global regulation in Corynebacterium glutamicum. Korean J. Microbiol. Biotechnol. 38: 349-361.
- Lee JY, Seo J, Kim ES, Lee HS, Kim P. 2013. Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett. 35: 709-717. https://doi.org/10.1007/s10529-012-1135-9
- Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high‐level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969. https://doi.org/10.1002/bit.24954
- Oh YH, Choi JW, Kim EY, Park K, Song BK, Jeong KJ, et al. 2015. Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 176: 2065-2075. https://doi.org/10.1007/s12010-015-1701-4
- Si M, Wang J, Xiao X, Guan J, Zhang Y, Ding W, et al. 2015. Ohr protects Corynebacterium glutamicum against organic hydroperoxide induced oxidative stress. PLoS One. 10: e0131634. https://doi.org/10.1371/journal.pone.0131634
- Zhang Y, Zhu Y, Zhu Y, Li Y. 2009. The importance of engineering physiological functionality into microbes. Trends. Biotechnol. 27: 664-672. https://doi.org/10.1016/j.tibtech.2009.08.006
- Fu RY, Bongers RS, Van Swam II, Chen J, Molenaar D, Kleerebezem M, et al. 2006. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metab. Eng. 8: 662-671. https://doi.org/10.1016/j.ymben.2006.07.004
- Zhang J, Fu RY, Hugenholtz J, Li Y, Chen J. 2007. Glutathione protects Lactococcus lactis against acid stress. Appl. Environ. Microbiol. 73: 5268-5275. https://doi.org/10.1128/AEM.02787-06
- Krisko A, Radman M. 2013. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold. Spring. Harb. Perspect. Boil. 5: a012765.
- Appukuttan D, Singh H, Park SH, Jung JH, Jeong S, Seo HS, et al. 2016. Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558. Appl. Environ. Microbiol. 82: 1154-1166. https://doi.org/10.1128/AEM.03371-15
- Ohba H, Satoh K, Sghaier H, Yanagisawa T, Narumi I. 2009. Identification of PprM: a modulator of the PprI-dependent DNA damage response in Deinococcus radiodurans. Extremophiles 13: 471-479. https://doi.org/10.1007/s00792-009-0232-8
- Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75: 133-191. https://doi.org/10.1128/MMBR.00015-10
- Ishino Y, Narumi I. 2015. DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr. Opin. Microbiol. 25: 103-112. https://doi.org/10.1016/j.mib.2015.05.010
- Munteanu AC, Uivarosi V, Andries A. 2015. Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus. Extremophiles. 19: 707-719. https://doi.org/10.1007/s00792-015-0759-9
- Park SH, Singh H, Appukuttan D, Jeong S, Choi YJ, Jung JH, et al. 2016. PprM, a cold shock domain-containing protein from Deinococcus radiodurans, confers oxidative stress tolerance to Escherichia coli. Front. Microbiol. 7: 2124.
- Varela CA, Baez ME, Agosin E. 2004. Osmotic Stress Response: Quantification of cell maintenance and metabolic fluxes in a Lysine-Overproducing Strain of Corynebacterium glutamicum. Appl. Environ. Microbiol. 70: 4222-4229. https://doi.org/10.1128/AEM.70.7.4222-4229.2004
- Kim YH, Kim HJ, Shin JH, Bhatia SK, Seo HM, Kim YG, et al. 2015. Application of diethyl ethoxymethylenemalonate (DEEMM) derivatization for monitoring of lysine decarboxylase activity. J. Mol. Catal. B: Enzymatic. 115: 151-154. https://doi.org/10.1016/j.molcatb.2015.01.018
- Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. 2015. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb. Cell Fact. 14: 21. https://doi.org/10.1186/s12934-015-0205-9
- Razak MA, Viswanath B. 2015. Optimization of fermentation upstream parameters and immobilization of Corynebacterium glutamicum MH 20-22 B cells to enhance the production of l-lysine. 3 Biotech 5: 531-540.
- Joo JC, Oh YH, Yu JH, Hyun SM, Khang TU, Kang KH, et al. 2017. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Bioresour. Technol. DOI: 10.1016/j.biortech.2017.05.131.
- Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH, et al. 2015. Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J. Chem. Eng. 32: 1945-1959. https://doi.org/10.1007/s11814-015-0191-y
Cited by
- Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria vol.58, pp.2, 2020, https://doi.org/10.1007/s12275-020-9290-5