하나의 시스템 내에 2개 이상의 상이 다른 유체가 존재할 시에는 다상유동에 의한 복장성이 존재하며, 이는 해석의 어려움이 따른다. 두 개 이상의 상이 다른 다상유동은 유동 및 경계면에 영향을 끼치지 때문에, 불안정성과 같은 비선형 유동이 나타나게 된다. 여러 종류의 불안정성 중 레일리히-테일러 불안정성은 대표적인 예로 알려져 있다. 본 연구에서는 밀도차가 레일리히-테일러 불안정성에 미치는 영향을 조사하기 위해 다양한 Atwood 수를 선정하였으며, 초기 경계면 형상 역시 다양한 형태를 설정하고 시뮬레이션 하였다. 본 연구에서 사용된 입자법인 MPS(Moving particle simulation)은 이러한 다상유동에서 널리 쓰이지는 않았으나, 다상유동을 위한 입자간 상호 연성 모델인 자가-부력 항, 표면 장력 항과 경계면 경계 조건 항을 추가로 사용하여 수치해석이 가능하게 하였다. 본 연구에서 새로이 개발된 다상유동형 입자법을 이용하여 고려된 경우들에 대해 수치해석을 수행하였으며, 각각의 결과들을 비교 분석하였다. 또한 레일리히-테일러 불안정성에 기인한 유동의 속도를 측정하여 포텐셜 기반의 이론값과의 비교를 통해 경향성이 일치함을 알 수 있었다. 이론값과의 크기의 차는 포텐셜 기반의 이론값에서는 고려가 힘든 비선형성에 기인한다고 사료된다.
Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.
본과에서는 2 증례의 사경증에 대하여 환자의 경부 운동의 범위를 증가시키고 이와 동시에 경부의 심미적인 V형태를 유지하기 위하여 Ferkel 등에 의한 Biopolar release와 Z-pasty를 이용하여 수술을 시행하였으며 술후 2주 이내에 물리치료를 시행하여 경부운동 범위의 증가와 경부의 심미적인 유지에 비교적 양호한 결과를 얻었다. 그러나 증례 2에서는 이미 안모의 변형이 초래된 성인으로 안모 변형의 개선을 위한 이차 수술을 계획중이며, 이러한안모의 변형을 방지하기 위하여는 조기에 이를 진단하고 외과적 및 비외과적인 방법을 통한 적절한 처치가 중요하리라 생각되었다. 이러한 사경증 환자의 초기 치료가 대부분 타과에서 이루어지기 때문에 구강악안면외과 의사에게는 어느정도 생소할 수 있지만 사경증에 의하여 경부나 안모의 변형 등이 발생할 수 있으므로 사경증에 대한 더 많은 관심과 연구가 이루어져야 할 것으로 사료되어 문한고찰과 함께 보고하는 바이다.
본 논문은 입자 기반 대규모 유체 시뮬레이션의 가속화 기법을 새롭게 제안한다. 전통적인 입자 기반 유체 시뮬레이션은 SPH(Smoothed Particle Hydrodynamics)기법[1]을 통해 인접 입자와 물리량을 상호작용하는 방식으로 이루어졌다. 이러한 방식은 잔잔한 표면이나 유체 내부와 같이 입자의 움직임이 적은 부분에서는 연산량에 비해 가시적인 변화를 보이지 않는다는 특성이 있다. 이러한 현상은 입자의 개수가 많아질수록 두드러지게 나타난다. 기존 연구에서는 유체의 각 부분을 적응적으로 나눔으로써 낭비되는 연산량을 줄이려는 시도를 했다. 본 논문은 대규모 시뮬레이션에 적합한 입자 기반 유체 시뮬레이션 기법을 제안한다. 시뮬레이션에서 사용되는 모든 입자를 유체 움직임의 기준이 되는 샘플링 입자와 샘플링 입자에 의해 움직임이 결정되는 보간 입자로 분류하고 샘플링 입자에 의해 생성되는 삼각형 맵과 무게중심 좌표계를 이용한 보간 방법을 통해 연산 시간을 단축하는 기법을 제안한다. 우리의 기법은 입자의 개수가 많을수록 더욱 효율적이며 유체 표면의 세밀한 움직임 또한 표현하는 것이 가능하다.
본 연구에서 이용한 3차원 유동모델인 POM(Princeton Ocean Model)은 저층수의 거동예측에 유리한 ${\sigma}$ 좌표계를 채용하고 있는 모델로서 범용성이 높고, 해양유동모델로서 개발되었지만 최근에는 연안역에서의 적용 예(박경 등, 1998)도 증가하고 있다. 기존의 POM은 ${\sigma}$좌표계 모델의 좌표변환에 기인한 수치오차에 대한 보정을 실시하지 않은 모델로서, 이러한 수치오차를 축소시키는 것은 저층부근의 유속의 정도향상에 매우 중요하지만 오차의 축소를 시도하지 않고 그대로 적용하고 있는 실정이다. 따라서, 본 연구에서는 $Sl{\Phi}rdal$(1997)이 제안한 방법을 이용하여 오차보정을 통한 3차원 유동모델인 POM의 정도향상을 실시하였다. 구축된 모델을 이용하여 우리나라의 대표적인 기수호중 하나인 영랑호에 적용하여 저층수의 거동을 파악하고 빈산소수괴를 포함한 저층수의 거동 및 형성기구를 명확히 할 수 있는 자료로서 활용하고자 하였다. 적용결과, 기존 POM모델과 비교하여 개량형 POM모델을 이용하였을 경우 수역에서의 저층수의 거동재현에 있어서 더욱 효과가 있음을 볼 수 있었다.
호안은 하천제방의 비탈면이 침식되지 않도록 보호하는 기능을 갖는다. 호안의 설계가 적정하지 않을 경우 강한 유속과 소류력에 의해 제방이 세굴되어 붕괴에 이를 수도 있다. 따라서 호안의 설계시 필요한 대표유속을 산정하는 것은 매우 중요하나 대부분 1차원 부등류해석에서 얻어진 수위와 평균유속자료를 적용한다. 이 경우 만곡 수로에서 발생하는 자유소용돌이와 강제소용돌이에 의한 유속증가는 반영되지 않으므로 만곡부 호안의 안정성을 확보하기 위해서는 대표유속에 대한 보정이 필요하다. 본 연구에서는 수치모의를 통해 단면의 최대유속과 평균유속을 산정하여 만곡 및 세굴영향을 고려한 대표유속 산정방법의 적용성에 대해 검토하였다. 그 결과 단면평균유속에 만곡의 영향과 세굴의 영향을 고려하여 적용한 대표유속과 수치모의결과에 추출된 최대유속을 비교한 결과가 거의 일치하는 것으로 나타났다. 또한, 호안재로로써 돌망태를 사용하는 경우에 대해서 만곡하도와 직선하도 일때의 사석크기를 기존 설계식에 적용하여 비교하였다. 향후, 우리나라의 특성에 맞는 호안설계방법을 제시하기 위하여 하천특성이 다른 대표적인 하천에 대한 추가적인 수치모의 및 분석이 필요하며, 이때 본 연구결과가 기초자료로 활용될 수 있을 것으로 기대된다.
강우유출모형의 입력 자료로 사용되는 강우 관측 자료의 불확실성이 유량예측에 미치는 영향을 분석하기 위하여 모형변수 검정의 불확실성 연구에서 사용하는 GLUE (Generalized Likelihood Uncertainty Estimation)방법을 입력 자료 부분으로 확장하여 적용 하였다. 독일의 Weida 유역의 강우 관측 자료를 바탕으로 구조적 및 비구조적인 불확실성 부분을 각각 구조적인 오차 수정 과정과 DUE (Data Uncertainty Engine)을 통하여 강우자료를 구성하였다. 이를 유역의 수문학적 작용을 고려하기 위해 선정한 집중형 강우유출모형, PDM (Probability Distribution Model)에 MC (Monte Carlo)와 GLUE 방법을 활용하여 적용하였다. MC검정변수들의 검정 후 반응 표면(Posterior response surface)을 검토하고 GLUE 의 반응검정 모형변수(Behavioural model parameter set)를 선택, 간략한 GLUE 유량곡선들을 계산하였다. 계산된 GLUE 유량곡선들을 모두 합하여 앙상블 유량을 산정하고, 이 유량의 90 분위를 강우량자료 및 모형변수 검정의 불확실성을 고려한 신뢰구간으로 제시하였다. PDM 모형의 결과는 유량곡선의 전구간에서 안정적인 모의 능력을 보여주고 있으나, 첨두유량 부분이 적게 산정되는 문제점을 보이고 있다. 본 연구에서 상대적으로 적은 수의 강우 시나리오 및 반응검정 모형변수의 적용이라는 한계에도 불구하고, GLUE 방법을 강우관측자료의 불확실성 부분으로 확장하여 강우자료 및 변수 검정의 불확실성을 고려한 모의된 유량예측의 신뢰구간의 적용가능성을 보여주고 있다.
세기조절방사선치료를 임상에 도입하는데 있어서 가장 중요한 관건 중 하나는 총 부여선량(monitor unit, MU)이 작을 경우에 조사량을 측정하는 방법이다. 따라서 본 연구에서는 다이오드 어레이를 사용하여 방사선량의 선형도, 선량 평탄도와 대칭도, 다엽조리개 위치 정확도 등을 점검할수 있는 방법에 대해 연구하였다. 6 MV와 10 MV, 2가지의 방사선이 조사되는 Simens Primus 선형가속기에서 멀티 다이오드 어레이를 사용하여 측정하였다. 총 부여선량의 안정도는 2가지 에너지에서 모두 측정되었다. 6 MV 에너지에서 선량의 선형도 오차는 20 MU, 10 MU, 5 MU, 4 MU, 2 MU 조사 시 각각 2.1, 3.4, 6.9, 8.6, 15.4%이었다. 10 MV 에너지 경우는 선량의 선형적 오차가 더 커서 2 MU 조사 시 최대 오차는 22%였다. 이러한 오차들은 D1_C0 값을 조절하여 교정하였을 경우는 모든 측정 값에서 2% 이내로 감소하였다. 선량 편평도와 대칭도는 교정 없이도 허용오차 범위에 포함되었다. 다이오드 배열장치를 사용하거나, 필름 측정을 이용하여 측정한 경우 picket fence test 값은 비슷한 결과를 나타내었다. 다이오드 어레이는 세기조절 방사선 치료시 방사선 안정도, 대칭도, 편평도, 및 다엽조리개의 위치정확도를 검사할 때 편한 방법이다. 또한 Siemens 선형가속기는 일반적인 D1-C0값이 0으로 되어 있는데, 강도조절 방사선치료를 사용할 때는 D1-C0값을 총 부여선량이 20이하일 때 방사선의 안정도가 큰 오차를 보이므로 반드시 D1_C0값을 조절하여 교정해야 한다.
WSN에 국한하여 많은 연구가 이루어졌다. 정적 WSN에 국한된 솔루션은 모바일 WSN에 적용하기가 어렵다. 모바일 WSN에 국한된 솔루션은 네트워크에 상당한 수의 앵커 노드가 있다고 가정하고 리소스가 제한된 상황에서 이러한 솔루션은 정적 및 모바일 혼합 WSN에 적용하기가 어렵다. 앵커 노드를 사용하지 않고 정적 노드와 모바일 노드가 혼합 된 혼합형 무선 센서 네트워크에 대해 효율적이고 정확하며 신뢰할 수 있는 방법으로 국한하여 서비스를 제공 할 수 없다. 정확도는 혼합 무선 센서 네트워크에 한정하여 중요한 요소이다. 본 논문에서는 무선 센서 네트워크에서 앵커 노드가 없는 위치 파악의 정확성에 대한 요구를 만족시키는 방법을 제시하였다. 홉 좌표 측정은 앵커 프리 로컬화를 위한 정확한 방법이 사용됩니다. 동일한 범주의 동일한 데이터를 사용하는 다른 방법과 비교할 때 이 방법은 다른 방법보다 정확도가 좋다. 또한, 우리는 WSN에서 앵커 노드가 없는 지역적으로 낮은 통신 및 계산 비용과 같은 효율성에 대한 요구를 충족시키기 위해 최소 스패닝트리 알고리즘을 적용했다. Java 시뮬레이션 결과는 제안된 접근 방식을 질적인 방법으로 수정하고 다양한 게재 위치에서 실적을 이해하는데 도움이 된다.
실용음악의 가창 및 악기에 대한 도제식 교육방식은 국내에 실용음악 교육이 도입된 이후부터 지금까지 큰 변화 없이 수용되어 왔다. '1대1 개인 레슨'이나 배정된 '전공지도 교수자에 의한 도제식 교육법' 이외의 다른 교수법에 대한 논의나 제안이 제기된 사례가 많지 않다. 1980년대 후반, 실용음악 교육이 국내에 소개된 이후 지금까지 실용음악 교육을 위한 CAI(Computer Aided Instruction) 코스웨어 개발은 실용음악 이외의 분야에서처럼 활발하게 이루어지지 않았다. 물론, 실용음악 분야에서도 컴퓨터를 활용한 음악 프로듀싱이나 영상 음악 분야의 비약적인 발전이 있었다. 하지만 발전된 컴퓨터 프로그램이 실용음악 교육에 적극적으로 적용되지 않고 있는 상황이다. 본 연구에서는 음악 제작 소프트웨어의 발전된 기능들을 활용하여 실용음악 가창 분야에서 전통적인 도제식 교육을 개선하기 위한 학습 방법에 대해 연구하고자 한다. 특히 본 논문에서는 음원의 음정 보정을 위해 개발된 피치 쉬프트(Pitch Shift)기술인 오토 튠(auto tune)을 활용한다. 이것을 통해 음정에 관한 실시간 피드백이나 녹음 후 모니터를 시각적으로 제공하여 가창 훈련 시 음정 정확성 향상을 유도할 수 있는 학습 방법을 제시하고자한다. 물론 가창력을 판단할 때 음정 정확도만 평가 되는 것은 아니며 음정 정확도 역시 발성, 발음 등의 복잡한 신체 능력에 영향을 받는다. 하지만 이 연구로 컴퓨터를 활용하는 교육이 실용음악 보컬 학습자들에게 시간적, 공간적 제한을 극복하여 더 효율적인 가창 훈련을 할 수 있는 방법 중 하나를 제시 할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.