DOI QR코드

DOI QR Code

Numerical Study on Rayleigh-Taylor Instability Using a Multiphase Moving Particle Simulation Method

다상유동형 입자법을 이용한 Rayleigh-Taylor 불안정성의 수치해석

  • Kim, Kyung Sung (Department Naval Architect & Ocean Engineering, Tongmyong University) ;
  • Koo, Bonguk (Department Naval Architect & Marine Engineering, Changwon National University) ;
  • Kim, Moo-Hyun (Department Civil Engineering, Texas A&M University) ;
  • Park, Jong-Chun (Department Naval Architect & Ocean Engineering, Pusan National University) ;
  • Choi, Han-Suk (Graduate School of Engineering Mastership, POSTECH) ;
  • Cho, Yong-Jin (Department Naval Architect & Ocean Engineering, Dong-Eui University)
  • Received : 2017.01.31
  • Accepted : 2017.02.13
  • Published : 2017.02.25

Abstract

Complexity of multiphase flows due to existence of more than two interface including free-surface in one system, cannot be simulated easily. Since more than two fluids affect to flows and disturb interface, non-linearities such as instabilities can be appeared. Among several instabilities on multiphase flows, one of representative is Rayleigh-taylor instability. In order to examine in importance of density disparity, several cases with numerous Atwood number are set. Moreover, investigation of influence on initial disturbance were also considered. Moving particle simulation (MPS) method, which was employed in this paper, was not widely used for multiphase problem. In this study, by adding new particle interaction models such as self-buoyance correction, surface tension, and boundary condition at interface models, MPS were developed having more strength of physics and robust. By applying newly developed multiphase MPS, considered cases are performed and compared each other. Additionally, though existence of disagreement of magnitude of rising velocity between theoretical values from linear potential theory and that of numerical simulation, agreement of tendency can be proved of similarity of result. the discordance of magnitude can be explained due to non-linear effects on numerical simulation which was not considered in theoretical result.

하나의 시스템 내에 2개 이상의 상이 다른 유체가 존재할 시에는 다상유동에 의한 복장성이 존재하며, 이는 해석의 어려움이 따른다. 두 개 이상의 상이 다른 다상유동은 유동 및 경계면에 영향을 끼치지 때문에, 불안정성과 같은 비선형 유동이 나타나게 된다. 여러 종류의 불안정성 중 레일리히-테일러 불안정성은 대표적인 예로 알려져 있다. 본 연구에서는 밀도차가 레일리히-테일러 불안정성에 미치는 영향을 조사하기 위해 다양한 Atwood 수를 선정하였으며, 초기 경계면 형상 역시 다양한 형태를 설정하고 시뮬레이션 하였다. 본 연구에서 사용된 입자법인 MPS(Moving particle simulation)은 이러한 다상유동에서 널리 쓰이지는 않았으나, 다상유동을 위한 입자간 상호 연성 모델인 자가-부력 항, 표면 장력 항과 경계면 경계 조건 항을 추가로 사용하여 수치해석이 가능하게 하였다. 본 연구에서 새로이 개발된 다상유동형 입자법을 이용하여 고려된 경우들에 대해 수치해석을 수행하였으며, 각각의 결과들을 비교 분석하였다. 또한 레일리히-테일러 불안정성에 기인한 유동의 속도를 측정하여 포텐셜 기반의 이론값과의 비교를 통해 경향성이 일치함을 알 수 있었다. 이론값과의 크기의 차는 포텐셜 기반의 이론값에서는 고려가 힘든 비선형성에 기인한다고 사료된다.

Keywords

References

  1. Chen, H. C., 2011, "CFD Simulation of Compressible Two-phase Sloshing Flow in a LNG Tank", Ocean Sys. Eng. 1(1), 29-55.
  2. Harlow, F. H., 1955, A Machine Calculation Method for Hydrodynamic Problems. Los Alamos Sci. Lab. report LAMS-1956.
  3. Harlow, F. H. and Welch, J. E., 1965, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids, 8, 2182-2189. https://doi.org/10.1063/1.1761178
  4. Joeng, S. M., Nam, J. W., Hwang, S. C., Park, J. C. and Kim, M. H., 2013, "Numerical prediction of oil amount leaked from a damaged tank using two-dimensional moving particle simulation method", Ocean Eng., Vol. 69, 70-78. https://doi.org/10.1016/j.oceaneng.2013.05.009
  5. Khayyer, A. and Gotoh, H., 2013, "Enhancement of Performance and Stability of MPS Mesh-free Particle Method for Multiphase Flows Characterized by High Density Ratios," J. Comput. Phys., 242(1), 211-233. https://doi.org/10.1016/j.jcp.2013.02.002
  6. Koshizuka, S. and Oka, Y., 1996, "Moving-Particle Semi-implicit Method for Fragmentation of Incompressible Fluid", Numer. Sci. Eng., 123, 421-434.
  7. Kim, K. S., Kim, M. H. and Park, J. C., 2014, "Simulation of Multiliquid-Layer Sloshing with Vessel Motion by using Moving Particle semi-implicit Method", J. Offshore Mech. Arctic Eng., Vol. 137, 051602-1, 2015.
  8. Lee, B. H., Park, J. C. and Kim, M. H., 2010, "Numerical Simulation of Impact Loads Using a Particle Method", Ocean Eng., 37, 164-173. https://doi.org/10.1016/j.oceaneng.2009.12.003
  9. Moeendarbary, E., Ng, T. Y. and Zangeneh, M., 2009, Dissipative Particle Dynamics: Introduction, Methodlogy and Complex Fluid Applications - A Review. Int. J. Appl. Mech. Eng., 1(4), 737-763. https://doi.org/10.1142/S1758825109000381
  10. Monaghan, J. J., 1994, Simulating free surface flows with SPH. Journal of computational physics, 110(2), 399-406. https://doi.org/10.1006/jcph.1994.1034
  11. Nomura, K., Koshizuka, S. Oka, A. and Obata, H., 2001, "Numerical Analysis of Droplet Breakup Behavior Using Particle Method", J. Nucl. Sci. Technol., 38(12), 1057-1064. https://doi.org/10.1080/18811248.2001.9715136
  12. Shakibaeinia, A. and Jin, Y.C., 2012, "MPS Mesh-free Particle Method for Multiphase Flows", Comp. Methods Appl. Mech. Eng., 229, 13-26.
  13. Sharp, D.H., 1984, "An overview of Rayleigh-Taylor instability", Physica D: Nonlinear Phenomena, 12(1), 3-18. https://doi.org/10.1016/0167-2789(84)90510-4
  14. Shirakawa, N., Horie, H., Yamamoto, Y. and Tsunoyama, S., 2001, "Analysis of the Void Distribution in a Circular Tube with the Two-Fluid Particle Interaction Method", J. Nucl. Sci. Technol., 38(6), 392-402. https://doi.org/10.1080/18811248.2001.9715045
  15. Sussman, M., Smereka, P. and Osher, S., 1994, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J. Comput. Phys., 114, 272-280.