• Title/Summary/Keyword: Correction Coefficient

Search Result 449, Processing Time 0.024 seconds

The Correlation Analysis and Correction factor of BMD in Forearm and Lumbar with DXA (DXA를 이용한 전완부와 요추부 골밀도 검사의 보정계수 및 상관관계 연구)

  • Han, Man-Seok
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.551-556
    • /
    • 2013
  • The Forearm and the lumbar spine bone mineral density bone mineral density values obtained through, T-score and Z-score correlation between numerical and calibration function obtained as a result of any one part to another part of the results is intended to infer. Groups of 66 patients, 11 patients by age 20-70 were composed of patients measured with the forearm and lumbar spine bone mineral density T-score and Z-score of the survey for each of the three factors that correlated to assess the correlation Find the correction factor to obtain the relationship. Bone mineral density of the correlation coefficient R = 0.769 correction factor is Y = 1.541X + 0.133. T-score of correlation coefficient R = 0.768 and the correction factor Y = 0.715X - 0.4 is Z-score of the correlation coefficient R = 0.635 correction factor Y = 0.751X - 0.162. It is regarded that there will be a clinical availability which can analogize the result of a part by using the result of the other part.

Establishment of Correction Equation for Filling Volumn according to Moisture Content (수분 함량별 부풀성 보정식 설정)

  • Chung Han-Joo;Kim Yong-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.94-99
    • /
    • 2005
  • To correct the difference of filling volumn for various cut tobacco and puffed stem according to moisture contents, correction equation was estamated by a simple regression analysis. The $R^2$(coefficient of determination) of correction equation was above 0.95. To verify the precision of correction equation, we predicted correction equation of other samples. The filling volumns by the difference of $1\%$ moisture content were $0.018\;~\;0.022cc/g$ (cut tobacco) and 0.060cc/g (puffed stem). The precision of correction equation for various cut tobacco was very high, but that of puffed stem was low due to quality deviation of row stem according to a season.

COMPARISON OF ATMOSPHERIC CORRECTION ALGORITHMS FOR DERIVING SEA SURFACE TEMPERATURE AROUND THE KOREAN SEA AREA USING NOAA/AVHRR DATA

  • Yoon, Suk;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • To retrieve Sea Surface Temperature(SST) from NOAA-AVHRR imagery the spilt window atmospheric correction algorithm is generally used. Recently, there have been various new algorithms developed to process these data, namely the variable-coefficient split-window, the R54 transmittance-ratio method, fixed-coefficient nonlinear algorithm, dynamic water vapour (DWV) correction method, Dynamic Water Vapour and Temperature algorithm (DWVT). We used MCSST (Multi-Channel Sea surface temperature) and NLSST(Non linear sea surface temperature) algorithms in this study. The study area is around the Korea sea area (Yellow Sea). We compared and analyzed with various methods by applying each Ocean in-situ data and satellite data. The primary aim of study is to verify and optimize algorithms. Finally, this study proposes an optimized algorithm for SST retrieval.

  • PDF

Real Time Error Correction of Hydrologic Model Using Kalman Filter

  • Wang, Qiong;An, Shanfu;Chen, Guoxin;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1592-1596
    • /
    • 2007
  • Accuracy of flood forecasting is an important non-structural measure on the flood control and mitigation. Hence, combination of horologic model with real time error correction became an important issue. It is one of the efficient ways to improve the forecasting precision. In this work, an approach based on Kalman Filter (KF) is proposed to continuously revise state estimates to promote the accuracy of flood forecasting results. The case study refers to the Wi River in Korea, with the flood forecasting results of Xinanjiang model. Compared to the results, the corrected results based on the Kalman filter are more accurate. It proved that this method can take good effect on hydrologic forecasting of Wi River, Korea, although there are also flood peak discharge and flood reach time biases. The average determined coefficient and the peak discharge are quite improved, with the determined coefficient exceeding 0.95 for every year.

  • PDF

Wind-tunnel blockage effect on drag coefficient of circular cylinders

  • Anthoine, J.;Olivari, D.;Portugaels, D.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.541-551
    • /
    • 2009
  • This paper explains how to correctly measure the drag coefficient of a circular cylinder in wind tunnels with large blockage ratios and for the sub-critical to the super-critical flow regimes. When dealing with large blockage ratios, the drag has to be corrected for wall constraints. Different formulations for correcting blockage effect are compared for each flow regime based on drag measurements of smooth circular cylinders performed in a wind tunnel for three different blockage ratios. None of the correction model known in the literature is valid for all the flow regimes. To optimize the correction and reduce the scatter of the results, different correction models should be combined depending on the flow regime. In the sub-critical regime, the best results are obtained using Allen and Vincenti's formula or Maskell's theory with ${\varepsilon}$=0.96. In the super-critical regime, one should prefer using Glauert's formula with G=0.6 or the model of Modi and El-Sherbiny. The change in the formulations appears at the flow transition with a variation of the wake pattern when passing from sub-critical to super-critical flow regimes. This parameter being not considered in the known blockage corrections, these theories are not valid for all the flow regimes.

ALGEBRAIC CORRECTION FOR METAL ARTIFACT REDUCTION IN COMPUTED TOMOGRAPHY

  • Jeon, Kiwan;Kang, Sung-Ho;Ahn, Chi Young;Kim, Sungwhan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • If there are metals located in the X-ray scanned object, a point outside the metals has its range of projection angle at which projections passing through the point are disturbed by the metals. Roughly speaking, this implies that attenuation information at the point is missing in the blocked projection range. So conventional projection completion MAR algorithms to use the undisturbed projection data on the boundary of the metaltrace is less efficient in reconstructing the attenuation coefficient in detailed parts, in particular, near the metal region. In order to overcome this problem, we propose the algebraic correction technique (ACT) to utilize a pre-reconstructed interim image of the attenuation coefficient outside the metal region which is obtained by solving a linear system designed to reduce computational costs. The reconstructed interim image of the attenuation coefficient is used as prior information for MAR. Numerical simulations support that the proposed correction technique shows better performance than conventional inpainting techniques such as the total variation and the harmonic inpainting.

Evaluate the usefulness of Coincidence Summing Correction Factors for Cylinder and Extended Source Penelope Simulation (실린더 및 확장 소스 PENELOPE 시뮬레이션에 대한 동시합성보정 계수 유용성 평가)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.821-831
    • /
    • 2021
  • In order to calibrate energy and efficiency using the PENELOPE Code, a PENELOPE simulation was performed using a volume source. Here, we want to verify peak efficiency and usefulness by performing simultaneous measurement and correction. calculate the coincident sum correction for all volumes, first subdivide the volumes of the cylinder and the four Marinelli beakers into three heights again. Therefore, the simultaneous measurement correction coefficient in three areas and the simultaneous measurement correction coefficient for the entire volume source are calculated as output. At low energies, the j value for each source volume (50-300 ml) is small and increases significantly in the high energy range. Simulation results showed good agreement within 2.5% for all source volumes except for 50 ml and 300 ml, which were up to 4%. This means that the correction for the simultaneous measurement effect during measurement is effective. In addition. Based on this, it can be confirmed that there is an advantage to improve the detection efficiency when measuring various sources and environmental samples.

The difference of image quality using other radioactive isotope in uniformity correction map of myocardial perfusion SPECT (심근 관류 SPECT에서 핵종에 따른 Uniformity correction map 설정을 통한 영상의 질 비교)

  • Song, Jae hyuk;Kim, Kyeong Sik;Lee, Dong Hoon;Kim, Sung Hwan;Park, Jang Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Purpose When the patients takes myocardial perfusion SPECT using $^{201}Tl$, the operator gives the patients an injection of $^{201}Tl$. But the uniformity correction map in SPECT uses $^{99m}Tc$ uniformity correction map. Thus, we want to compare the image quality when it uses $^{99m}Tc$ uniformity correction map and when it uses $^{201}Tl$ uniformity correction map. Materials and Methods Phantom study is performed. We take the data by Asan medical center daily QC condition with flood phantom including $^{201}Tl$ 21.3 kBq/mL. After postprocessing with this data, we analyze CFOV integral uniformity(I.U) and differential uniformity(D.U). And we take the data with Jaszczak ECT Phantom by American college of radiology accreditation program instruction including $^{201}Tl$ 33.4 kBq/mL. After post processing with this data, we analyze spatial Resolution, Integral Uniformity(I.U), coefficient of variation(C.V) and Contrast with Interactive data language program. Results In the flood phantom test, when it uses $^{99m}Tc$ uniformity correction map, Flood I.U is 3.6% and D.U is 3.0%. When it uses $^{201}Tl$ uniformity correction map, Flood I.U is 3.8% and D.U is 2.1%. The flood I.U is worsen about 5%, but the D.U is improved about 30% inversely. In the Jaszczak ECT phantom test, when it uses $^{99m}Tc$ uniformity correction map, SPECT I.U, C.V and contrast is 13.99%, 4.89% and 0.69. When it uses $^{201}Tl$ uniformity correction map, SPECT I.U, C.V and contrast is 11.37%, 4.79% and 0.78. All of data are improved about 18%, 2%, 13% The spatial resolution was no significant changes. Conclusion In the flood phantom test, Flood I.U is worsen but Flood D.U is improved. Therefore, it's uncertain that an image quality is improved with flood phantom test. On the other hand, SPECT I.U, C.V, Contrast are improved about 18%, 2%, 13% in the Jaszczak ECT phantom test. This study has limitations that we can't take all variables into account and study with two phantoms. We need think about things that it has a good effect when doctors decipher the nuclear medicine image and it's possible to improve the image quality using the uniformity correction map of other radionuclides other than $^{99m}Tc$, $^{201}Tl$ when we make other nuclear medicine examinations.

  • PDF

Improvement of flood simulation accuracy based on the combination of hydraulic model and error correction model

  • Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.258-258
    • /
    • 2018
  • In this study, a hydraulic flow model and an error correction model are combined to improve the flood simulation accuracy. First, the hydraulic flow model is calibrated by optimizing the Manning's roughness coefficient that considers spatial and temporal variability. Then, an error correction model were used to correct the systematic errors of the calibrated hydraulic model. The error correction model is developed using Artificial Neural Networks (ANNs) that can estimate the systematic simulation errors of the hydraulic model by considering some state variables as inputs. The input variables are selected using parital mutual information (PMI) technique. It was found that the calibrated hydraulic model can simulate flood water levels with good accuracy. Then, the accuracy of estimated flood levels is improved further by using the error correction model. The method proposed in this study can be used to the flood control and water resources management as it can provide accurate water level eatimation.

  • PDF

Fundamental stuyd on reflection phenomenon of weak pressure-wave from an open end of a pipe (관단으로부터 미소 압력파의 반사에 관한 기초적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.618-626
    • /
    • 1998
  • This paper describes a series of fundamental studies on reflection and emission of weak pressure waves from an open end of a pipe. Acoustical theories which have been employed in the plane pressure waves inside a pipe are applied to the present study. The objective of the present study is to investigate the reflection or emission coefficient of pressure wave at an open end of a pipe, the length of open end correction, and the directivity characteristics of the pressure waves emitted from the pipe. The results show that the reflection coefficient of pressure wave at an open end and the length of open end correction decrease for the wave length of pressure wave to increase. It is also found that the reflection coefficient for a baffle plate at the exit of pipe is larger than that for no baffle plate.