• Title/Summary/Keyword: Corona wind

Search Result 60, Processing Time 0.019 seconds

금속관형 코로나 방전극을 적용한 효과적인 이온풍 발생 (Effective Ionic Wind Generation Utilizing a Cylindrical Corona Discharge Electrode)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.599-603
    • /
    • 2010
  • A point-mesh type corona system has been well used as a ionic wind blower. However this type corona system suffers from its lower ionic wind generation, because of its lower on-set and breakdown voltages of its very sharp needle point corona electrode. This means that the point corona electrode must act both as an effective ion-generator and a very higher electric field producer in the discharge airgap in order to generate higher ionic wind velocity. In this paper, a cylinder-mesh type discharge system as a ionic wind generator is proposed and investigated. The cylindrical corona electrode can produce many ions from its sharpened edge, and the corona on-set and breakdown voltages are very higher than those of the needle point corona electrode. As a result, this type cylindrical corona electrode might generate a higher ionic wind than the needle point corona electrode.

관형 코로나 방전전극을 이용한 이온풍속의 최대화 (An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

방전 침전극의 곡률반경이 이온풍 발생에 미치는 영향 (Effect of Radius of Curvature of a Corona Needle on Ionic Wind Generation)

  • 황덕현;문재덕
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.604-608
    • /
    • 2010
  • An electric fan for cooling high density electronic devices is limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic gas pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and yields of the ionic pump. In this study, a needle-mesh type ionic pump has been investigated by focusing on the radius of curvature of corona needle points elevating the ionic wind velocity and efficiency. It is found that the radius of curvature of the corona discharge needle point influences significantly to produce the ionic wind and efficiency. As a result, an elevated ionic wind velocity and increased ionic wind generation yield can be obtained by optimized the radius of curvature of the corona needle electrode.

정전집진기내의 입자궤적 가시화 (Particle Trajectory Visualization in Electrostatic Precipitator)

  • 박석주;김상수
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3270-3275
    • /
    • 1994
  • Particle trajectory visualization using laser sheet was performed to investigate the corona wind flow interactions in the one-wire and two-wire type electrostatic precipitators. The corona wind generated by corona discharge was not negligible, and strong flow interactions took place owing to the induced circulatory cells. In the case of one-wire type, as the applied voltage was increased and the cross-section mean velocity was decreased, the effect of corona wind became active. In the case of two-wire type, if upstream discharge voltage was relatively higher than downstream discharge voltage, the effect of upstream corona wind was reduced.

교류 코로나 방전시 주파수 변화에 따른 전기유체역학적 특성 (Electrohydrodynamic Characteristics of AC Corona Discharge for the Frequency)

  • 정재승;김진규
    • 조명전기설비학회논문지
    • /
    • 제26권12호
    • /
    • pp.87-92
    • /
    • 2012
  • In this paper, EHD(electrohydrodynamics) characteristics of AC corona discharge for the various frequency was investigated. Ionic wind velocity is controlled by the frequency of applied ac high voltage, and maximum velocity of the ionic wind is obtained at 1.2kHz. Maximum velocity are 1.90 m/s by metal corona electrode and 2.72m/s by wet porous corona electrode, These attain 91~99% of the maximum velocity in the DC corona discharge by adjusting the frequency through the experiments. In this paper, wet porous corona electrode has high possibility of cooling methode because a AC corona discharge using wet porous corona electrode is able to eject more water droplets than DC corona discharge.

코로나 모터를 이용한 송풍장치의 특성 연구 (The Study of Wind Blower Characteristics Using a Blade Type Corona Motor)

  • 정재승;김형표;김진규
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.76-81
    • /
    • 2013
  • In this paper, a corona motor with blade type electrodes has been employed as a wind blower. The rotation speed was influenced significantly by the polarity of applied voltage and the number of blades. Therefore the effect of polarity of applied voltage and the number of blades on the electrical and mechanical fundamental properties of corona motor were investigated experimentally. The rotation speed decreased for increasing of number of blades, because the mass of blades increased. But the amount of air blow increased despite decreasing of the rotation speed, because air volume is not only influenced by rotation speed but also the number of blades and ionic wind which generated between blade tips and a induction electrode. Although space occupied by blades of the corona motor is smaller than the whole area of the blast pipe, wind rises a whole range of a wind blower for such reasons.

장벽 방전형 공기 펌프의 이온풍 발생에 미치는 방전전극 형상의 영향 (Effect of Discharge Electrode Shape of a Barrier Discharge Type Gas Pump on Ionic Wind Generation)

  • 황덕현;문재덕
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.994-998
    • /
    • 2009
  • Existing cooling technologies no longer provide adequate heat dissipation due to excessive heat generation caused by the growing component density on electronic devices. An ionic gas pump can be used for the thermal management of micro-electronic devices, since the size of pump can be reduced to a micrometer scale. In addition, the gas pump allows for gas flow control and generation without moving parts. This ideal property of gas pump gives rise to a variety of applications. However, all these applications require maximizing the wind velocity of gas pump. In this study a barrier discharge type gas pump, with a needle-shaped corona electrode instead of a plate-shaped corona electrode, has been investigated by focusing on the corona electrode shape on the wind velocity and wind generation yield. As a result, the enhanced wind velocity and wind generation yield of 1.76 and 3.37 times were obtained with the needle-shaped corona electrode as compared with the plate-shaped corona electrode of the proposed barrier discharge type gas pump.

와이어 전극과 평행판에서 발생되는 이온풍 특성 연구 (A Study on an Ion Wind Created by a Wire Electrode and Parallel Plates Assembly)

  • 안영철;황필재;이재근
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.318-323
    • /
    • 2004
  • When a strong electric field is applied between a sharply curved electrode and a blunt surface, the corona may result in a gas movement in the electrode gap which is directed toward the blunt surface. That is called the corona wind. It enhances heat and mass transfer between the surface and the surrounding gas. Moreover such enhancement causes no noise or vibration, which can be applied in complex, isolated geometries, and allows simple control of surface temperatures. This paper examines the relationship between the corona wind and the relative humidity. The facility consists of high voltage power supply thin tungsten wire, plate electrode, multimeter, microammeter and flow meter. Gas velocity is a linear function of voltage, relative humidity and is proportional to the square root of the current. The maximum velocities for the positive and negative corona discharge are 1.9 m/s (2.74 CMM/m), 1.5 m/s(2.15 CMM/m), respectively.

DC 코로나 방전이 적용된 에틸렌 정상 확산 화염의 Soot 배출 저감 (Reduction of Soot Emitted from a $C_2$$H_4$ Normal Diffusion Flame with Application of DC Corona Discharge)

  • 이재복;황정호
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.496-506
    • /
    • 2001
  • The effect of corona discharge on soot emission was experimentally investigated. Size and number concentrations of soot aggregates were measured and compared for various voltages. Regardless of the polarity of the applied voltage, the flame length decreased and the tip of flame spreaded with increasing voltage. For the experimental conditions selected, the flame was blown off toward the ground electrode by corona ionic wind. When the negative applied voltage was greater than 3kV(for electrode spacing = 3.5cm), soot particles in inception or growth region were affected by the corona discharge, resulting in the reduction of number concentration. The results show that the ionic wind favored soot oxidation and increased flame temperature. Number concentration and primary particle size greatly increased, when the corona electrodes were located the region of soot nucleation or growth(close to burner mouth).

가속전극의 적용에 따른 이온풍 발생 특성 (Characteristics of Ion Wind Generation According to Application of Acceleration Electrodes)

  • 김철규;장경민;김진규
    • 전기학회논문지
    • /
    • 제68권5호
    • /
    • pp.656-661
    • /
    • 2019
  • Currently, the devices to generate ion winds in air are mainly composed of corona electrodes and induction(ground) electrodes, of which the corona electrodes mainly use needles or wires as electrodes and the induction electrodes use plate electrodes of ring or mesh type. Ion winds can be effectively generated through a diverse combination of corona electrodes and induction electrodes mentioned above. However, only changing the form and structure of corona electrodes and induction electrodes has a limit in raising the speed of ion winds. This paper conducted a study on the characteristics of ion wind generation by additionally installing acceleration electrodes in addition to corona electrodes and induction electrodes to increase the speed of ion winds.