DOI QR코드

DOI QR Code

Reduction of Soot Emitted from a $C_2$$H_4$ Normal Diffusion Flame with Application of DC Corona Discharge

DC 코로나 방전이 적용된 에틸렌 정상 확산 화염의 Soot 배출 저감

  • Published : 2001.04.01

Abstract

The effect of corona discharge on soot emission was experimentally investigated. Size and number concentrations of soot aggregates were measured and compared for various voltages. Regardless of the polarity of the applied voltage, the flame length decreased and the tip of flame spreaded with increasing voltage. For the experimental conditions selected, the flame was blown off toward the ground electrode by corona ionic wind. When the negative applied voltage was greater than 3kV(for electrode spacing = 3.5cm), soot particles in inception or growth region were affected by the corona discharge, resulting in the reduction of number concentration. The results show that the ionic wind favored soot oxidation and increased flame temperature. Number concentration and primary particle size greatly increased, when the corona electrodes were located the region of soot nucleation or growth(close to burner mouth).

Keywords

References

  1. Place, E. E. and Weinberg, F. J., 1967, 'The Nucleation of Flame Carbon by Ions and The Effect of Electric Fields,' Eleventh Symp.(Int.) on Combustion, pp. 245-255
  2. Hardesty, D. R. and Weinberg, F. J., 'Electrical Control of Particulate Pollutants from Flames,' Fourteenth Symp.(Int.) on Combustion, pp. 907-928
  3. Mayo, P. J. and Weinberg, F. J., 1970, 'On the Size, Charge and Number-Rate of Formation of Carbon Particles in Flames Subjected to Electric Fields,' Proc. Roy. Soc, London, A319, pp. 351-371
  4. Bradley, D. and Nasser, S. H., 1984, 'Electrical Coronas and Burner Flame Stability,' Combust. flame, Vol. 55, pp. 53-58 https://doi.org/10.1016/0010-2180(84)90148-2
  5. Bradly, D., 1986, 'The Effect of Electric Fields on Combustion Process,' Advanced Combustion Methods, Chap 6
  6. Vermury, S. and Pratsinis, S. E., 1996, 'Charging and Coagulation during Flame Synthesis of Silica,' J. Aerosol Sci., Vol. 4, pp. 951-966 https://doi.org/10.1016/0021-8502(96)00040-7
  7. Ohisa, H., Horisawa, H. and Kimura, I., 1999, 'Control of Soot Emission of a Turbulent Diffusion Flame by DC of AC Corona Discharges,' Combust. Flame, Vol. 116, pp. 653-661 https://doi.org/10.1016/S0010-2180(98)00054-6
  8. Saito, M., Arai, T. and Arai, M., 1999, 'Control of Soot Emitted from Acetylene Diffusion Flames by Applying an Electric Field,' Combust. Flame, Vol. 119, pp. 356-366 https://doi.org/10.1016/S0010-2180(99)00065-6
  9. Kittelson, D. B., 1998, 'Engines and Nanoparticles: A Review,' J. Aerosol Sci., Vol. 29, pp. 575-588 https://doi.org/10.1016/S0021-8502(97)10037-4
  10. Payne, K. G. and Weinberg, F. J., 1959, 'A Preliminary Investigation of Field-Induced Ion Movement in Flame Gases and Its Applications,' Proc. Roy. Soc. (London) Vol. A250, pp. 316-336
  11. Santoro, R. J., Yeh, T. T., Horvath, J. J. and Semerjian, H. G., 1987, 'The Transport and Growth of Soot Particles in Laminar Diffusion Flames,' Combust. Sci. Tech., Vol. 53, pp. 89-115 https://doi.org/10.1080/00102208708947022
  12. Leonard, G. L., Mitchner, M. and Self, S. A., 1983, 'An Experimental Study of the Electrohydrodynamic Flow in electrostatic Precipitators,' J. Fluid. Mech., Vol. 127, pp. 123-140 https://doi.org/10.1017/S0022112083002657
  13. Santoro, R. J., Semerjian, H.G. and Dobbins, R. A., 1983, 'Soot Particle measurement of Diffusion Flames,' Combust. Flame, Vol. 51, pp. 203-218 https://doi.org/10.1016/0010-2180(83)90099-8
  14. Okazaki, K. and Willeke, K., 1987, 'Transmission and Deposition Behavior of Aerosols in Sampling Inlets,' Aerosol Sci. Technol., Vol. 7, pp. 275-283 https://doi.org/10.1080/02786828708959164
  15. Liu, B.Y.H. and Pui, D.Y.H., 1974, 'A Submicron Aerosol Standard and the Primary Calibration of the Condensation Nuclei Counter,' J. Coll. Interface Sci., Vol. 46, pp. 155-171 https://doi.org/10.1016/0021-9797(74)90090-3
  16. Kallio, G. A. and Stock, D. E., 1992, 'Interaction of electrostatic and Fluid Dynamic Fields in Wire-Plate Electrostatic Precipitator,' J. Fluid Mech., Vol. 240, pp. 133-166 https://doi.org/10.1017/S0022112092000053
  17. 최인철, 이재복, 황정호, 2000, 'Sooting 및 Non-sooting 정상 확산 화염에서 생성되는 매연입자의 특성 연구,' 대한기계학회논문집(B), 제24권, 제7호, pp. 984-993
  18. Oglesby, S. and Nichols, G., 1978, Electrostatic Precipitation, Marcel Dekker
  19. Vermury, S. and Pratsinis, S. E., 1995, 'Corona-Assisted Flame Synthesis of Ultrafine Titania Particles,' Appl. Phys. Lett., Vol. 66, pp. 3275-3277 https://doi.org/10.1063/1.113402
  20. Lee, J. B., Hwang, J. and Bae, G. N., 2000, 'Soot Particle Reentrainment in a Corona Discharge Reactor,' JSME Int. H. Ser.B, Vol. 43, pp. 602-607