• 제목/요약/키워드: Corners of Building

검색결과 61건 처리시간 0.02초

Systematic influence of wind incident directions on wind circulation in the re-entrant corners of high-rise buildings

  • Qureshi, M. Zahid Iqbal;Chan, A.L.S.
    • Wind and Structures
    • /
    • 제22권4호
    • /
    • pp.409-428
    • /
    • 2016
  • The mechanical and aerodynamic effect of building shape plays a dominate role in the pedestrian level wind environment. These effects have been presented in numerous studies and are available in many wind codes. However, most studies have focused on wind flow around conventional buildings and are limited to few wind directions. The present study investigated wind circulation in the re-entrant corners of cross-shaped high-rise buildings from various wind directions. The investigation focused on the pedestrian level wind environment in the re-entrant corners with different aspect ratios of building arrangements. Ninety cases of case study arrangements were evaluated using wind tunnel experimentation. The results show that for adequate wind circulation in the re-entrant corners, building orientations and separations play a critical role. Furthermore, in normal wind incident directions and at a high aspect ratio, poor wind flow was observed in the re-entrant corners. Moreover, it was noted that an optimized building orientation and aspect ratio significantly improved the wind flow in re-entrant corners and through passages. In addition, it was observed that oblique wind incident direction increased wind circulation in the re-entrant corners and through passages.

건물벽면 영상내 코너점의 대응관계 구성을 위한 사영변환행렬의 적용성 (Applicability of Projective Transformation for Constructing Correspondences among Corners in Building Facade Imagery)

  • 서수영
    • 대한원격탐사학회지
    • /
    • 제30권6호
    • /
    • pp.709-717
    • /
    • 2014
  • 본 연구는 사영변환행렬을 적용한 경우 건물벽면 영상 간 코너점의 대응정도를 분석하는 것을 목표로 한다. 부가적으로 코너점을 찾기 위한 적절한 연산자를 실험을 통하여 결정하였다. 건물형상에 대한 모델링은 항공사진, 항공라이다영상, 지상사진, 지상라이다영상 등 다양한 자료를 이용하여 많은 기법들이 연구되어 왔다. 본 연구에서는 영상 간 정합을 위하여 필요한 코너점 검출방법으로 Harris 연산자와 FAST 연산자의 성능을 비교하였다. 비교결과 Harris 연산자가 건물벽면에서 코너점 추출에 우수하다는 결론을 내렸다. Harris 연산자로 코너점 검출 후, 사영변환행렬을 통하여 코너점 들의 대응정도를 비교한 결과, 대부분의 경우 최소거리에 실제 대응점들이 위치해 있음을 알 수 있었다. 사영변환행렬의 성능을 기준점 수와 분포를 고려하여 대응정도에 미치는 영향을 분석한 결과 기준점이 많고 골고루 분포한 경우에 더욱 정확한 대응 관계를 제공하는 것으로 나타났다.

Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition

  • Tse, K.T.;Chen, Zeng-Shun;Lee, Dong-Eun;Kim, Bubryur
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.227-238
    • /
    • 2021
  • This study analyzed the pressure patterns and local pressure of tall buildings with corner modifications (recessed and chamfered corner) using wind tunnel tests and proper orthogonal decomposition (POD). POD can distinguish pressure patterns by POD mode and more dominant pressure patterns can be found according to the order of POD modes. Results show that both recessed and chamfered corners effectively reduced wind-induced responses. Additionally, unique effects were observed depending on the ratio of corner modification. Tall building models with recessed corners showed fluctuations in the approaching wind flow in the first POD mode and vortex shedding effects in the second POD mode. With large corner modification, energy distribution became small in the first POD mode, which shows that the effect of the first POD mode reduced. Among building models with chamfered corners, vortex shedding effects appeared in the first POD mode, except for the model with the highest ratio of corner modifications. The POD confirmed that both recessed and chamfered corners play a role in reducing vortex shedding effects, and the normalized power spectral density peak value of modes showing vortex shedding was smaller than that of the building model with a square section. Vortex shedding effects were observed on the front corner surfaces resulting from corner modification, as with the side surface. For buildings with recessed corners, the local pressure on corner surfaces was larger than that of side surfaces. Moreover, the average wind pressure was effectively reduced to 88.42% and 92.40% in RE1 on the windward surface and CH1 on the side surface, respectively.

Study on aerodynamic shape optimization of tall buildings using architectural modifications in order to reduce wake region

  • Daemei, Abdollah Baghaei;Eghbali, Seyed Rahman
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.139-147
    • /
    • 2019
  • One of the most important factors in tall buildings design in urban spaces is wind. The present study aims to investigate the aerodynamic behavior in the square and triangular footprint forms through aerodynamic modifications including rounded corners, chamfered corners and recessed corners in order to reduce the length of tall buildings wake region. The method used was similar to wind tunnel numerical simulation conducted on 16 building models through Autodesk Flow Design 2014 software. The findings revealed that in order to design tall 50 story buildings with a height of about 150 meters, the model in triangular footprint with aerodynamic modification of chamfered corner facing wind direction came out to have the best aerodynamic behavior comparing the other models. In comparison to the related reference model (i.e., the triangular footprint with sharp corners and no aerodynamic modification), it could reduce the length of the wake region about 50% in general. Also, the model with square footprint and aerodynamic modification of chamfered corner with the corner facing the wind could present favorable aerodynamic behavior comparing the other models of the same cluster. In comparison to the related reference model (i.e., the square footprint with sharp corners and no aerodynamic modification), it could decrease the wake region up to 30% lengthwise.

Kalman filter를 이용한 에지의 직선화 기법 (Line fitting method of edge pixels using Kalman filter)

  • 예철수;정헌석;김성종;현득창
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 한국컴퓨터산업교육학회 2003년도 제4회 종합학술대회 논문집
    • /
    • pp.39-44
    • /
    • 2003
  • This paper presents an algorithm for acquisition of linear segments of building from edge pixels using Kalman filtering. We can obtain the accurate position of building corners from the linear segments of building. The corner points are used to calculate the position of building corners in world coordinate using stereo vision technique. The algorithm has been applied to pairs of stereo aerial images and the result showed accurate linear segment detection from edge pixels of roof boundaries.

  • PDF

Stresses around an underground opening with sharp corners due to non-symmetrical surface load

  • Karinski, Y.S.;Yankelevsky, D.Z.;Antes, M.Y.
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.679-696
    • /
    • 2009
  • The paper aims at analyzing the stress distribution around an underground opening that is subjected to non-symmetrical surface loading with emphasis on opening shapes with sharp corners and the stress concentrations developed at these locations. The analysis is performed utilizing the BIE method coupled with the Neumann's series. In order to implement this approach, the special recurrent relations for half plane were proven and the modified Shanks transform was incorporated to accelerate the series convergence. To demonstrate the capability of the developed approach, a horseshoe shape opening with sharp corners was investigated and the location and magnitude of the maximum hoop stress was calculated. The dependence of the maximum hoop stress location on the parameters of the surface loading (degree of asymmetry, size of loaded area) and of the opening (the opening height) was studied. It was found that the absolute magnitude of the maximum hoop stress (for all possible surface loading locations) is developed at the roof points when the opening height/width ratio is relatively large or when the pressure loading area is relatively narrow (compared to the roof arch radius), and contrarily, when the opening height/width ratio is relatively small or when the surface pressure is applied to a relatively wide area, the absolute magnitude of the maximum hoop stress is developed at the bottom sharp corner points.

Partial Compatibility Test 를 이용한 로봇의 위치 추정 및 매핑의 Data Association (Data Association of Robot Localization and Mapping Using Partial Compatibility Test)

  • 염서군;최윤성;무경;한창수
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.129-138
    • /
    • 2016
  • This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.

초고층 건물의 각주형 단면에 대한 공력 불안정 진동 및 풍진 저감 효과에 관한 실험적 연구 (Reducing Effect of Wind-induced Vibration on Rectangular Model of Super-Highrise Building with Length of Corners Cutting)

  • 정영배
    • 한국강구조학회 논문집
    • /
    • 제13권3호
    • /
    • pp.301-311
    • /
    • 2001
  • 내풍설계에 있어서, 아스펙트비가 6정도인 초고층 건물의 각주형 단면의 바람에 의한 공력 불안정 진동 또는 갤로핑 진동이 발생할 수 있다. 본 연구에서는 등류에서 아스펙트비 6정도이고 변장비가 1/4간격으로 1에서 2까지의 초고층 건물의 각주형 단면에대한 공력불안정 진동과 갤로핑 진동에 대해 실험적으로 고찰하였다. 실험 결과, 등류시 코너 컷이 없는 경우가 코너 컷을 가진 초고층 건물의 각주형 단면에 비해 공력 불안정 진동이 커지는 경향이 있으며, 또한 갤로핑 진동도 나타났다. 따라서, 코너 컷에 의해 각주형 초고층 건물에서의 공력 불안정 진동은 효과적으로 저감되었다.

  • PDF

조선후기 홑처마이면서 사래를 갖는 건축에 관한 연구 (A Study on the Single Eaves Buildings Constructing Sarae in the Late Joseon Dynasty)

  • 이연노
    • 건축역사연구
    • /
    • 제26권4호
    • /
    • pp.45-54
    • /
    • 2017
  • This thesis mainly deals with the meaning of single eaves buildings which have Chunyeo with Sarae. As a rule, building with single eaves does not construct Sarae. But we can find some special buildings using Chunyeo with Sarae in the corners of the eaves. At this time, many people say that lower part of the member so called Alchunyeo, and upper part of the member so called Chunyeo. And they also say that the using of Alchunyeo was caused by the shortage of timber which can make Chunyeo properly. As a result, single eaves buildings using Chunyeo with Sarae in the corners of the eaves were not caused by the shortage of timber. That kinds of buildings were made by the hierarchy of building. Single eaves buildings with Sarae have lower rank than double eaves buildings, and also have higher rank than those without Sarae. And we have to say that lower part of the member is Chunyeo, and upper part of the member is Sarae.

Aerodynamic behavior of supertall buildings with three-fold rotational symmetric plan shapes: A case study

  • Rafizadeh, Hamidreza;Alaghmandan, Matin;Tabasi, Saba Fattahi;Banihashemi, Saeed
    • Wind and Structures
    • /
    • 제34권5호
    • /
    • pp.407-419
    • /
    • 2022
  • Many factors should be considered by architects and designers for designing a tall building. Wind load is one of these important factors that govern the design of tall building structures and can become a serious challenge when buildings tend to be built very tall and slender. On the other hand, through the initial stages of a design process, choosing the design geometry greatly affects the wind-induced forces on a tall building. With this respect, geometric shapes with 3-fold rotational symmetry are one of the applied plan shapes in tall buildings. This study, therefore, aims to investigate the aerodynamic characteristics of 8 different geometrical shapes using Computational Fluid Dynamics (CFD) by measuring the drag and lift forces. A case study approach was conducted in which different building shape models have the same total gross area and the same height of 300 meters. The simulation was an incompressible transient flow that ran 1700 timesteps (85 seconds on the real-time scale). The results show a great difference between wind-induced force performance of buildings with different plan shapes. Generally, it is stated that the shapes with the same area, but with smaller perimeters, are better choices for reducing the drag force on buildings. Applying the lift force, the results show that the buildings with plan shapes that have rounded corners act better in crosswind flow while, those with sharp corners induce larger forces in the same direction. This study delivers more analytical understanding of building shapes and their behavior against the wind force through the parametric modelling.