• Title/Summary/Keyword: Cores

Search Result 1,545, Processing Time 0.032 seconds

Properties and Formaldehyde Emission of Particleboards Fabricated with Waste Wood Charcoal (폐목재 탄화물로 제조한 파티클보드의 물성과 포름알데히드 방출량)

  • Park, Sang-Bum;Lee, Sang-Min;Park, Jong-Young;Kang, Eun-Chang
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • Particleboard(PB) is one of the most commonly used wood-based composite materials, which can be prepared by utilizing any kind of low grade wooden materials like waste wood which contains formaldehyde itself. Therefore, PB have been of considerable interest, in issues regarding the formaldehyde emission problems. Wood wastes are carbonized by the carbonization kiln at $800^{\circ}C$. Charcoal has been known as a formaldehyde adsorber. Thus, in this study, we fabricated PBs with carbonized waste particles cores, to examine the possibility of developing less formaldehyde emitting boards. The physical and mechanical properties were evaluated by Korean Standard (KS F 3104). The moisture content of PBs ranged from 6.76 to 8.36%. Internal bond strengths decreased with the increase in the content of carbonized core particles. Formaldehyde emission showed minimum value at 25% of carbonized core particles, but the emission values increased when the amount of carbonized cote particles increased. When 25% of carbonized core particles was used, PBs met KS F 3104 standard properties.

  • PDF

Ecological Management of Turf Insects and Zoysia Large Patch by Mixing Turfgrass Species (잔디 혼식을 통한 생태학적 병충해 관리)

  • 박봉주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Ecological control can contribute to the sustainibility of vegetation management systems by reducing the input currently derived from non-renewable fossil energy sources. The use of turfgrass mixtures is an important tool in turf management. Turfgrass mixtures of two or more compatible and adapted species provide improved tolerance to pest and environmental stress, more so than monostands. The objectives of this study were to evaluated turf insects, pests and zoysia large patch control by turgrass mixtures. In April 2001 and 2002, plots were inoculated with 50g of Rhizoctonia solani AG2-2LP inoculum. Inoculum were treated within a 29cm diamater circle at Zoysia japonica, Zoysia japonica, Poa pratenis, or Festuca arundinacea mixtures. After four weeks, disease severity in each plot was determined. plot area visual ratings were assessed visually on a linera 0 to 100%. In August 2001 and October 2002, turf insects and pests in each plot were investigated in 10cm deep soil cores with 8cm diameters using hole cut. Zoysia large patch affected zoysiagrass monostands more severly than zoysiagrass and cool-season turfgrasses mixtures. It was suggested that the barrier effect of cool-season turfgrass suppressed zoysia large patch in the mixture of zoysiagrass and cool-season turfgrasses. Also, warm-season and cool-season turfgrasses mixtures suppressed insect populations more efficiently than warm-season turfgrass monostands.

Design Concept and Architecture Analysis of Cell Microprocessor (Cell 마이크로프로세서 설계 개념과 아키텍쳐 분석)

  • Moon Sang-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.927-930
    • /
    • 2006
  • While Intel has been increasing its exclusive possession in the system IC semiconductor market, IBM, Sony, and Toshiba founded an alliance to develop the next entertainment multi-core processor, which is named CELL. Cell is designed upon the Power architecture and includes 8 SPE (Synergistic processor Element) cores for data handling, and supports SIMD architecture for optimal execution of multimedia, or game applications. Also, it includes expanded Power microarchitecture. In this paper, we analyzed and researched the Cell microprocessor, which is evaluated as the most powerful processor in this era.

  • PDF

An Efficient Load Balancing Technique in a Multicore Mobile System (멀티코어 모바일 시스템에서 효과적인 부하 균등화 기법)

  • Cho, Jungseok;Cho, Doosan
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.5
    • /
    • pp.153-160
    • /
    • 2015
  • The effectiveness of multicores depends on how well a scheduler can assign tasks onto the cores efficiently. In a heterogeneous multicore platform, the execution time of an application depends on which core it executes on. That is to say, the effectiveness of task assignment is one of the important components for a multicore systems' performance. This work proposes a load scheduling technique that analyzes execution time of each task by profiling. The profiling result provides a basic information to predict which task-to-core mapping is likely to provide the best performance. By using such information, the proposed technique is about 26% performance gain.

Passive Lossless Snubbers Using the Coupled Inductor Method for the Soft Switching Capability of Boost PFC Rectifiers

  • Kim, Ho-Sung;Baek, Ju-Won;Ryu, Myung-Hyo;Kim, Jong-Hyun;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.366-377
    • /
    • 2015
  • In order to minimize switching losses for high power applications, a boost PFC rectifier with a novel passive lossless snubber circuit is proposed. The proposed lossless snubber is composed of coupled inductors merged into a boost inductor. This method compared with conventional methods does not need additional inductor cores and it reduces extra costs to implement a soft switching circuit. Especially, the proposed circuit can reduce the reverse recovery current of output diode rectifiers due to the coupling effect of the inductor. During turn-on and turn-off operating modes, the proposed PFC converter operates under soft switching conditions with high power conversion efficiency. In addition, the performance improvement and analysis of the operating effects of the coupled inductors were also presented and verified with a 3.3 kW prototype rectifier.

Loss Calculation of a High Power DC-DC Converter Considering DC Bias Characteristic of Inductor (인덕터의 DC 바이어스 특성을 고려한 대용량 DC-DC 컨버터의 손실계산)

  • Jo, Young-Chang;Choi, Ju-Yeop;Jung, Seung-Ki;Choy, Ick;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.789-795
    • /
    • 2011
  • It is necessary to accurately predict converter losses for optimized design of a high-power DC-DC converter. The losses of switching devices and inductor among the elements of the converter take significantly greater proportion. The current ripple will be determined by the size of the inductance and this inductance value varies depending on the DC amount of inductor current. As the inductance changes according to load current, the change influences not only the inductor loss itself but also the total converter loss. In this paper, for more accurate design of a bi-directional DC-DC converter for 30kW-class energy storage system, more accurate computational model is proposed considering inductance variation according to the load current change. The inductance changes using variable magnetic cores are verified and converter efficiency is tested through simulations and experiments.

Study on designing of Flat Transformer and operating characteristics of Converter (Flat Transformer 코아의 설계와 컨버터 동작 특성)

  • Han, Se-Won;Cho, Han-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • The first attention in designing a transformer for low temperature rise should be to reduce losses. Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries

  • Chung, Yeon-Wook;Lee, Byung-Ill;Cho, Byoung-Ki
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.

A Reduced-Boron OPR1000 Core Based on the BigT Burnable Absorber

  • Yu, Hwanyeal;Yahya, Mohd-Syukri;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.318-329
    • /
    • 2016
  • Reducing critical boron concentration in a commercial pressurized water reactor core offers many advantages in view of safety and economics. This paper presents a preliminary investigation of a reduced-boron pressurized water reactor core to achieve a clearly negative moderator temperature coefficient at hot zero power using the newly-proposed "Burnable absorber-Integrated Guide Thimble" (BigT) absorbers. The reference core is based on a commercial OPR1000 equilibrium configuration. The reduced-boron ORP1000 configuration was determined by simply replacing commercial gadolinia-based burnable absorbers with the optimized BigT-loaded design. The equilibrium cores in this study were directly searched via repetitive Monte Carlo depletion calculations until convergence. The results demonstrate that, with the same fuel management scheme as in the reference core, application of the BigT absorbers can effectively reduce the critical boron concentration at the beginning of cycle by about 65 ppm. More crucially, the analyses indicate promising potential of the reduced-boron OPR1000 core with the BigT absorbers, as its moderator temperature coefficient at the beginning of cycle is clearly more negative and all other vital neutronic parameters are within practical safety limits. All simulations were completed using the Monte Carlo Serpent code with the ENDF/B-VII.0 library.

Clustering and traveling waves in the Monte Carlo criticality simulation of decoupled and confined media

  • Dumonteil, Eric;Bruna, Giovanni;Malvagi, Fausto;Onillon, Anthony;Richet, Yann
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1157-1164
    • /
    • 2017
  • The Monte Carlo criticality simulation of decoupled systems, as for instance in large reactor cores, has been a challenging issue for a long time. In particular, due to limited computer time resources, the number of neutrons simulated per generation is still many order of magnitudes below realistic statistics, even during the start-up phases of reactors. This limited number of neutrons triggers a strong clustering effect of the neutron population that affects Monte Carlo tallies. Below a certain threshold, not only is the variance affected but also the estimation of the eigenvectors. In this paper we will build a time-dependent diffusion equation that takes into account both spatial correlations and population control (fixed number of neutrons along generations). We will show that its solution obeys a traveling wave dynamic, and we will discuss the mechanism that explains this biasing of local tallies whenever leakage boundary conditions are applied to the system.