• Title/Summary/Keyword: Core Deformation

검색결과 407건 처리시간 0.022초

Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets

  • Arefi, M.;Meskini, M.
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.459-467
    • /
    • 2019
  • In this paper, hyperbolic shear deformation theory is used for free vibration analysis of piezoelectric rectangular plate made of porous core. Various types of porosity distributions for the porous material is used. To obtain governing equations of motion, Hamilton's principle is used. The Navier's method is used to obtain numerical results of the problem in terms of significant parameters. One can conclude that free vibration responses are changed significantly with change of important parameters such as various porosities and dimensionless geometric parameters such as thickness to side length ratio and ratio of side lengths.

자동차 실린더 블록 주조에서 워터 자켓용 샌드 코어 특성에 영향을 미치는 인자 (Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting)

  • 김기준
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.185-191
    • /
    • 2021
  • 본 자동차 실린더 블록 주조시 실린더 보어 내에서 발생하는 열로부터 구조적 변형을 방지하는데 필요한 워터 자켓 코어용 주물사의 특성을 분석하였다. 샌드 코어의 특성평가를 위하여 인장강도 시험기, 입도 지수(AFS-GFN), 광학현미경을 사용하였다. 주물사의 SiO2 함량이 높으면 고온팽창에 의한 치수 불량, 베이닝 불량이 발생하며, 너무 낮으면 코어 파손, 기포, 화학적 소착 등이 발생하였다. 입도 지수와 입형이 코어강도와 레진 소비량에 영향을 미치고, 이로 인한 불량 유형 변화가 발생하였다. 건조사가 염분이 높을수록 코어 강도는 감소하며, 알칼리성일수록 코어 강도가 감소하였다. 레진 함량 1.6~1.8%에서 1시간 경화 이후에 코어 강도 증가는 대략 최대를 보였다.

Seismic behavior of steel reinforced concrete special-shaped column-beam joints

  • Liu, Z.Q.;Xue, J.Y.;Zhao, H.T.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.665-680
    • /
    • 2016
  • This paper focuses on the study of seismic behavior of steel reinforced concrete special-shaped column-beam joints. Six specimens, which are designed according to the principle of strong-member and weak-joint core, are tested under low cyclic reversed load. Key parameters include the steel form in column section and the ratio of column limb height to thickness. The failure mode, load-displacement curves, ductility, stiffness degradations, energy dissipation capacity and shear deformation of joint core of the test subassemblies are analyzed. The results indicate that SRC special-shaped column-beam joints have good seismic behavior. All specimens failed due to the shear failure of the joint core, and the failure degree between the two sides of joint core is similar for the exterior joint but different for the corner joint. Compared to the joints with channel steel truss, the joints with solid web steel skeleton illustrate better ductility and energy dissipation capacity, but the loading capacity and stiffness are roughly close. With the increasing of the ratio of column limb height to thickness, the joints illustrate higher loading capacity and stiffness, better energy dissipation capacity, but worse ductility.

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.

New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores

  • Fard, Keramat Malekzadeh;Livani, Mostafa
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.719-742
    • /
    • 2015
  • This paper dealt the free vibration analysis of thick truncated conical composite sandwich shells with transversely flexible cores and simply supported boundary conditions based on a new improved and enhanced higher order sandwich shell theory. Geometries were used in the present work for the consideration of different radii curvatures of the face sheets and the core was unique. The coupled governing partial differential equations were derived by the Hamilton's principle. The in-plane circumferential and axial stresses of the core were considered in the new enhanced model. The first order shear deformation theory was used for the inner and outer composite face sheets and for the core, a polynomial description of the displacement fields was assumed based on the second Frostig's model. The effects of types of boundary conditions, conical angles, length to radius ratio, core to shell thickness ratio and core radius to shell thickness ratio on the free vibration analysis of truncated conical composite sandwich shells were also studied. Numerical results are presented and compared with the latest results found in literature. Also, the results were validated with those derived by ABAQUS FE code.

Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets

  • Xu, Kuo;Yuan, Yuan;Li, Mingyang
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.633-642
    • /
    • 2019
  • In this work, lightweight sandwich plates consisting of a functionally graded porous (FGP) core and two laminated composite face sheets resting on elastic foundation have been proposed. Three different profiles are considered for the distributions of porosities along core thickness. The main aim of this paper is the investigation of the buckling behavior of the proposed porous sandwich plates (PSPs) by reporting their critical mechanical loads and their corresponding mode shapes. A finite element method (FEM) based on first order shear deformation theories (FSDT) is developed to discretize governing equations for the buckling behavior of the proposed sandwich plates. The effects of porosity dispersion and volume, the numbers and angles of laminated layers, sandwich plate geometrical dimensions, elastic foundation coefficients, loading and boundary conditions are studied. The results show that the use of FGP core can offer a PSP with half weight core and only 5% reduction in critical buckling loads. Moreover, stacking sequences with only ${\pm}45$ orientation fibers offer the highest values of buckling loads.

Cyclic test of buckling restrained braces composed of square steel rods and steel tube

  • Park, Junhee;Lee, Junho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.423-436
    • /
    • 2012
  • In this study total of six buckling-restrained braces (BRBs) were manufactured using a square steel rod as a load-resisting core member and a hollow steel tube as restrainer to prevent global buckling of the core. The gap between the core and the tube was filled with steel rods as filler material. The performances of the proposed BRB from uniaxial and subassemblage tests were compared with those of the specimens filled with mortar. The test results showed that the performance of the BRB with discontinuous steel rods as filler material was not satisfactory, whereas the BRBs with continuous steel rods as filler material showed good performance when the external tubes were strong enough against buckling. It was observed that the buckling strength of the external tube of the BRBs filled with steel rods needs to be at least twice as high as that of the BRBs filled with mortar to ensure high cumulative plastic deformation of the BRB.

Variations in the hysteretic behavior of LRBs as a function of applied loading

  • Ozdemir, Gokhan;Bayhan, Beyhan;Gulkan, Polat
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.69-78
    • /
    • 2018
  • The study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.

냉온회로 및 제어가 JAR곡율반경에 미치는 영향 (Influence affected on the curvature radius of jar by circuit of cooling temperature and temperature control)

  • 신남호;최석종
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1313-1318
    • /
    • 2007
  • 다양한 곡률반경의 연속에 의하여 살 두께 차가 큰 jar50ml의 성형가공시간 단축과 품질향상을 위하여 금형을 급속 냉각시키면 void, 후로우 및 변형 등의 불량이 발생하게 된다. 제품내측과 외측의 온도조절을 충분히 할 수 있는 캐비티부와 코아부에 나선형 냉각회로 구조와 가열과 냉각을 자동 제어할 수 있는 시스템을 Jar금형에 적용함으로 우수한 품질과 생산성향상의 효과를 얻을 수 있다.

  • PDF

Strength enhancement in confined concrete with consideration of flexural flexibilities of ties

  • Teerawong, J.;Lukkunaprasit, P.;Senjuntichai, T.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.151-166
    • /
    • 2004
  • The interaction between concrete core expansion and deformation of perimeter ties has been known to have a significant effect on the effective confinement of rectangular reinforced concrete (RC) tied columns. This interaction produces passive confining pressure to the concrete core. Most existing models for determining the response of RC tied columns do not directly account for the influence of flexural stiffness of the ties and the variation of confining stress along the column height. This study presents a procedure for determining the confined compressive strength of RC square columns confined by rectilinear ties with various tie configurations considering directly the influence of flexural flexibility of the ties and the variation of confining stress along the vertical direction. The concept of area compatibility is employed to ensure compatibility of the concrete core and steel hoop in a global sense. The proposed procedure yields satisfactory predictions of confined strengths compared with experimental results, and the influence of tie flexibility, tie configuration and degree of confinement can be well captured.