• Title/Summary/Keyword: Core Concrete

Search Result 785, Processing Time 0.023 seconds

Prediction and Measurement of Differential Column Shortening in High-rise Building Structures (고층건물의 부등축소량 예측 및 계측)

  • 정금진;양근혁;이정한;홍재원;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.511-516
    • /
    • 2000
  • A Hybrid Wall System(HWS) building, Kolon Bundang Tripolis was instrumented to measure the vertical deformation of core-walls and columns. The vertical shortening of individual members were measured at selected floor levels such as 1F, 12F, 25F, and 34F. The measurement has been taken during one year after the construction was started. Together with the measurement, concrete property tests were performed in the laboratory using the concrete obtained in the field. The measured vertical shortenings were compared with the calculated prediction values and the satisfactory agreement was obtained.

  • PDF

A Study on the Strength Characteristics of Concrete Cores (콘크리트 코어의 강도특성에 관한 연구)

  • 권영웅;이성용;신정식;전익찬;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.85-90
    • /
    • 2002
  • This paper concerns the within test strength of concrete cured under different conditions. Those conditions are water curing, field curing and cores drilled from the existing structures. The test factors are not only above cured conditions but also concrete ages of 3, 7, 14 and 28 days and concrete strength of 202, 252 and 650kgf/$\textrm{cm}^2$. The test results are as follows; (1) In spite of within test results, concrete strength is very different from curing states of concrete (2) The strength of cores drilled from existing structures are smaller than the strength of concrete cured in water by 3~4% and larger than that of concrete cured in field by 8~17% (3) Core strength is largely dependant on the curing state of top surface of concrete.

  • PDF

An Experimental Study on the Flowability of Super Flowing Concrete (초유동콘크리트의 유동특성에 관한 실험적 연구)

  • 권영호;이상수;박연동;김진근;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.1-7
    • /
    • 1995
  • In this paper, we decribed the basic elements required for the practical usage of super flowing concrete. The flowability and filingability of fresh concrete was measured by using six different testing methods. Also, two actual size members were used for investigating characteristics of the hardened concrete through variious experiments. As the result of the experimentation, the developed super flowing concrete shown high flowability and fillingability good enough for the requirement. Furthermore, inner uniformity of the no-vibrated concrete was verified by testing distribution of aggregates and core cylinders. Therefore, quality control and workability of concrete can be secured by using the super flowing concrete even without vibrating However, it ha been felt that development of easy evaluation methods for the super flowing concrete is in need.

  • PDF

Flexural ductility of RC beam sections at high strain rates

  • Pandey, Akhilesh K.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.537-552
    • /
    • 2013
  • Computation of flexural ductility of reinforced concrete beam sections has been proposed by taking into account strain rate sensitive constitutive behavior of concrete and steel, confinement of core concrete and degradation of cover concrete during load reversal under earthquake loading. The estimate of flexural ductility of reinforced concrete rectangular sections has been made for a wide range of tension and compression steel ratios for confined and unconfined concrete at a strain rate varying from $3.3{\times}10^{-5}$ to 1.0/sec encountered during normal and earthquake loading. The parametric studies indicated that flexural ductility factor decreases at increasing strain rates. Percentage decrease is more for a richer mix concrete with the similar reinforcement. The confinement effect has marked influence on flexural ductility and increase in ductility is more than twice for confined concrete (0.6 percent volumetric ratio of transverse steel) compared to unconfined concrete. The provisions in various codes for achieving ductility in moment resisting frames have been discussed.

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

A Study on the Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Percentage that aggregate of materials that concrete composed about $70{\sim}80%$ of whole volume, therefore influence that quality of aggregate gets in concrete characteristics are very important. Schmidt hammer and ultra-sonic velocity method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by present equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameters were concrete age, curing condition, and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

The Investigation of the Effects on Bent-up Bars within Beam-Column Joint Core with High-Strength Concrete (고강도 콘크리트 보-기둥접합부의 역학적 거동에 대한 연구 -구부림 철근을 중심으로-)

  • 이광수;오정근;신성우;최문식
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.123-132
    • /
    • 1991
  • The purpose of this study was to Investigate the effects of bent - up bar Within beam - column 1lint core with High - Strength Concrete up to 800kg/$cm^2$. To achieve these objectives, 5 specimens were designed and tested under monotoric loading and reversed cyclic loadings. The primary variables were the number of bent-up bars, compressive strength of concrete and loading patterns. The results showed that the load capacity of specimen subjected to monotonic loading had more large than that of specirnn subjected to reversed cyclic loadings and the bent - up bar within joint core could prevented the crack at the joint face from propagating into the pint core but the failure was concentrated at the face of beam - column pint. Thus the study on flexural strength ratio should be accomplished before using bent - up bars within the joint core.

An Experimental Study on High Strength Concrete for Concrete Filled Steel Tube Column for Field Application (CFT구조용 초고강도 콘크리트의 현장 적용을 위한 실험적 연구)

  • Lee Jang Hwan;Kim Young Joo;Joung Kwang Sik;Kang Tea Kyung;Jung Keun Ho;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.454-457
    • /
    • 2004
  • Due to social problems such as the increasing of land price and the expanding of city, buildings require more complex and bigger components and structure. However, the complex and massive building projects need new technology to solve effect of local buckling and the needs for more space. Hence, Concrete Filled Tube Steel (CFT), the tube steel to hold concrete during pouring and curing of concrete procedure, which helps to reduce local buckling and space, was developed. Most researches on CFT might not be focused on the characteristic of concrete 'filled in tube but structural analysis. However, it is the essential factor to increase the strength of concrete on CFT for having efficient results. Therefore, this paper will describe how to apply CFT into the construction site through examining High Strength Concrete $(800kg/cm^2)$, the strength of core, and bleeding during pouring strategy.

  • PDF

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.