• Title/Summary/Keyword: Copper-selective electrode

Search Result 22, Processing Time 0.023 seconds

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Electroanalytical Determination of Copper(II) Ions Using a Polymer Membrane Sensor

  • Oguz Ozbek;Meliha Burcu Gurdere;Caglar Berkel;Omer Isildak
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2023
  • In this study, a new potentiometric sensor selective to copper(II) ions was developed and characterized. The developed sensor has a polymeric membrane and contains 4.0% electroactive material (ionophore), 33.0% poly(vinyl chloride) (PVC), 63.0% bis(2-ethylhexyl)sebacate (BEHS) and 1.0% potassium tetrakis(p-chlorophenyl)borate (KTpClPB). This novel copper(II)-selective sensor exhibits a Nernstian response over a wide concentration range from 1.0×10-6 to 1.0×10-1 mol L-1 with a slope of 29.6 (±1.2) mV decade-1, and a lower detection limit of 8.75×10-7 mol L-1. The sensor, which was produced economically by synthesizing the ionophore in the laboratory, has a good selectivity and repeatability, fast response time and stable potentiometric behaviour. The potential response of the sensor remains unaffected of pH in the range of 5.0-10.0. Based on the analytical applications of the sensor, we showed that it can be used as an indicator electrode in the quantification of Cu2+ ions by potentiometric titration against EDTA, and can also be successfully utilized for the determination of copper(II) ions in different real samples.

${\beta}-Ag_3SI$ Single Crystal Membrane Electrode (${\beta}-Ag_3SI$ 단결정막 전극에 관한 연구)

  • Sin Doo-Soon;Seon-Cheon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.86-94
    • /
    • 1984
  • The single crystal ion-selective electrode,$ {\beta}-Ag_3SI/PVC-THF $membrane electrode has showed a linear potential response to the activities of iodide ion (10-1${\sim}$10-7M). The $ {\beta}-Ag_3SI$ membrane electrode was compared with AgI/PVC-THF membrane and copper metal plate membrane electrodes. In order to measure the selectivity coefficient of the electrodes toward $Cl^-$ and $Br^-$, the separation and mixed solution method were employed. The potential-time curve was obtained by the usual immersion technique and pH effect was also examined. The orders of selectivity for $Br^-$, $Cl^-$ and stability of response time are ${\beta}-Ag_3SI/PVC-THF $membrane > AgI/PVC-THF membrane > copper metal plate membrane. These electrodes could be used as indicating electrodes in the potentiometric titration of a single halide and mixed halides with the standard solution of silver nitrate.

  • PDF

Preparation of Coated-Wire Nitrate Ion Selective Electrode and its Application for Environmental Analysis (질산이온 선택성 피복선 전극의 제작 및 환경분석에의 응용)

  • 李龍根;金昌圭;朴廷泰;金京燮;黃圭子
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.99-107
    • /
    • 1985
  • A coated wire ion selective electrode for nitrate (nitrate-CWE_ was constructed using epoxy resin, ion exchanger and plasticizer as a polymer membrane. It's stility, the composition of a polymer membrane, the response characteristics, the selectivity were examined and applied to the environmental analysis. The nitrate-CWE was prepared using a copper wire, wihch was coated with epoxy resin being incorporated with the nitrate ion exchanger and plasticizer. The best composition of the polymer membrane for the nitrate-CWE was obtained by mixing epoxy resin, ion exchanger and plasticizer in the ratio of 2:1:0.4. The potential (56.3$\pm$0.5 mV) of stick form nitrate-CWE in this composition was close to that (59.2 mV) of Nernstian response. The detection limit for nitrate ion were found to the about $6 \times 10^{-5}M$ and the useful pH was 2.5 $\sim$ 10.3. Furthermore, the selectivity of iodide and perchrorate for the nitrage-CWE was also much improved compared with that for a liquid membrane nitrate electrode. The nitrate-CWE was used to determind $NO_x$ in stack gas. The results were in good agreement with those obtained either by electrode method or by the improved NEDA method within a relative error of 4.0%.

  • PDF

Pore Gradient Nickel-Copper Nanostructured Foam Electrode (기공 경사화된 나노 구조의 니켈-구리 거품 전극)

  • Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.270-276
    • /
    • 2010
  • Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.

Determination of Copper in Black, Red Pepper and the Waste Water Samples by a Highly Selective Sensitive Cu(II) Microelectrode Based on a New Hexadentates Schiff's Base

  • Norouzi, Parviz;Ganjali, Mohammad Reza;Faridbod, Farnoush;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1439-1444
    • /
    • 2006
  • A $Cu^{2+}$ ion-selective membrane microelectrode has been fabricated from poly vinyl chloride (PVC) matrix membrane containing a new symmetrical hexadentate Schiff,s base 2-{1-(E)-2-((Z)-2-{(E)-2-[(Z)-1-(2-hydroxyphenyl)ethylidene]hydrazono}-1-methylpropylidene)hydrazono]ethyl}phenol (HDNOS) as a neutral carrier, Potassium tetrakis(4-chlorophenyl) borate (KTpClPB) as an anionic excluder and o-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The microelectrode displays linear potential response in the concentration range of $1.0\;{\times}\;10^{-5}-1.0\;{\times}\;10^{-11}$ M of $Cu^{2+}$. The microelectrode exhibits a nice Nernstian slope of 25.9 ${\pm}$ 0.3 mV $decade^{-1}$ in the pH range of 3.1-8.1. The sensor has a relatively short response time in whole concentration ranges ($\sim$5 s). The detection limit of proposed sensor is $5.0\;{\times}\;10^{-12}$ M (320 pg/L), and it can be used over a period of eight weeks. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of $Cu^{2+}$ with EDTA. The proposed membrane electrode was used for the direct determining of $Cu^{2+}$ content in black and red pepper, and in waste water samples.

Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry

  • Attar, Tarik;Harek, Yahia;Larabi, Lahcen
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.568-573
    • /
    • 2013
  • A selective and sensitive method for simultaneous determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The procedure involves an adsorptive accumulation of Cu(II)-ETSC (4- ethyl-3-thiosemicarbazide) on a hanging mercury drop electrode, followed by a stripping voltammetry measurement of reduction current of adsorbed complex at about -715 mV. The optimum conditions for the analysis of copper (II) ion are : pH 10.3, concentration of 4-ethyl-3-thiosemicarbazide $3.25{\times}10^{-6}$ M and an accumulation potential of -100 mV. The peak current is proportional to the concentration of copper over the range 0.003-125 ng/mL with a detection limit of 0.001 ng/mL and an accumulation time of 60 s. Moreover, with the use of the proposed method, there is a considerable improvement in the detection limit, the linear dynamic range and the deposition time, compared with the methods of adsorptive stripping voltammetry for the determination of copper. The developed method was validated by analysis of whole blood certified reference materials.

Voltammetric Determination of Copper(II) Using Glassy Carbon Electrodes Modified with Nafion-DTPA-Glycerol

  • Park, Chan-Ju;Park, Eun-Heui;Chung, Keun-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.177-180
    • /
    • 2003
  • A glassy carbon electrode(GCE) modified with nafion-DTPA-glycerol was used for the highly selective and sensitive determination of a trace amount of Cu$\^$2+/. Various experimental parameters, which influenced the response of nafion-DTPA-glycerol modified electrode to Cu$\^$2+/, were optimized. The copper(II) was accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface was characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry, A linear range was obtained in the concentration range 1.0${\times}$10$\^$-8/M∼1.0${\times}$10$\^$-6/M Cu(II) with 7 min preconcentration. Further, when an approximate amount of lead(II) is added to the test solution, nafion-DTPA-glycerol modified glassy carbon electrode has a dynamic range of 2 orders magnitude(1.0${\times}$10$\^$-9/M∼1.0${\times}$10$\^$-7/M). The detection limit(3 $\sigma$) was as low as 5.0${\times}$10$\^$-6/M(0.032ppb). The interferences from other metal ions could be reduced by adding KCN into the sample solutions. This method was applied to the determination of coppe,(II) in certified reference material(3.23${\times}$10$\^$-7/M, 21ppb), sea water(9.50${\times}$10/sup-7/M, 60ppb). The result agrees satisfactorily with the value measured by Korea Research Institute of Standard and Science.

  • PDF

A Study for the Properties of Cupric Ion Selective Electrode and Its Applications (구리이온 선택성전극의 특성 및 그 응용에 관한 연구)

  • Kee-Chae Park;Young-Soon Kwon;Huh Won-Do
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.385-391
    • /
    • 1979
  • It was found that cupric ion selective electrode, which was prepared by mixing CuS and $Ag_2S$ with the ratio four to one and PVC, was hard and durable. The response potentials were reproducible and linear in the range from 1.0 ${\times}$ $10^{-1}M$ to 1.0 ${\times}$ $10^{-5}M$ copper (II) solution and its slope was 25.0 mV per decade concentration at $298^{\circ}K$, slightly different from Nernstian slope. The copper (II) indicating electrode was applied in precipitation titration of 1.0 ${\times}$ $10^{-2} M Cu(II)$ sample solution containing proper amounts $NaNO_3$ with 0.1 M NaOH standard solution. Also, this electrode could be used in complex titration of Zn(II), Mg(II), Ca(II) with EDTA and stability constant of EDTA complex of Ca(II) and Mg(II) was calculated by using known Cu-$EDTA^{2-}$ stability constant.

  • PDF