• Title/Summary/Keyword: Copper surface

Search Result 1,366, Processing Time 0.025 seconds

Characteristics of Cooling for the Adjacent Double Micro-Porous Coated Surfaces in PE5060 (마이크로다공성 코팅된 인접 복수 발열체에 대한 PF5060의 냉각 특성)

  • Kim Tae-Gyun;Kim Yoon-Ho;Lee Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.646-655
    • /
    • 2006
  • The present research is an experimental study on characteristics of cooling behavior for the adjacent copper blocks with surface roughness or micro-porous coated surface. The experiments were carried out at saturation state or within subcooled states of PF5060. The effects of heater orientation and the intervals between heating surfaces or substrates were investigated under various heat flux conditions. The boiling performance of copper block with micro-porous coated surface was better than that of copper block with surface roughness. It is understood that the bubble sweeping enhances boiling performance for the heaters with inclinations of $\theta=45^{\circ}\;and\;\theta=90^{\circ}$, where as the bubble flattening decreases boiling performance for the heaters with inclinations of $\theta=135^{\circ}\;and\;\theta=180^{\circ}$. In comparison to upper heater and below heater with orientation, the upper heater has lower superheat temperature than the below heater due to the bubble sweeping. It is also found that boiling performance decreases in the case of adjacent double heaters with only 0.2cm substrate interval.

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • Journal of Surface Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF

Influence on EDM Surface with the Copper and Graphite Electrode According to the Discharge Energy (방전에너지에 따라 동전극과 흑연전극이 방전가공면에 미치는 영향)

  • Choi, Jae-Yong;Jeon, Eon-Chan;Jeong, Jae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 1997
  • This study has been performed to inmvestigate MRR(metal removal rate), REW(relative electrode wear), surface roughness, heat transumutation layer and microhardness distribution in cross-section of the machined surface with various pulse-on duration and peak pulse current, using the copper and graphite electrode on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) There exists critical pulse-on duration(If Ip equals 5A, .tau. on is 50 .mu. s) which shows the the maximum MRR in accordance with peak oulse current and the MRR decreases when the pulse-on duration exceeds the critical pulse-on during because of the abnormal electric discharge. b) Safe discharge is needed to make maximum of MRR and the metalic organization must be complicated for discharge induction. c) Graphite has much more benefits than copper electrode when rapid machining is done without electrode wear. d) The most external surface has the highest microhardness because of car- burizing from heat analysis of the dielectric fluid and the lower layar of the white covered layer has lower microhar dness than base matal because of softening.

  • PDF

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

New Methods of Producing Copper Sulfate Crystals Using Small-Scale Chemistry(SSC) in Elementary School Science (초등과학에서 미량화학(SSC)을 이용한 황산구리 결정 만들기의 새로운 방법)

  • Han, Sang-Joon;Kim, Sung-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.981-992
    • /
    • 2008
  • This study examined how to produce new methods of copper (II) sulfate crystallization by using a small-scale chemistry tool such as small-scale reaction surface and petri dish. The making of copper(II) sulfate is included in the 5th grade elementary science textbooks. Various copper(II) compounds were reacted with a 2 M sulfuric acid solution. The result of this study is as follows: Seven small amounts of copper(II) compounds were reacted with a few drops of 2 M sulfuric acid solution at room temperature to make a copper(II) sulfate crystal of triclinic shape. Using the petri dish method, a copper(II) sulfate crystal could be identified within one hour of reacting copper(II) hydroxide, copper(II) carbonate, copper(II) nitrate, copper(II) perchlorate, cupric(II) formate from a few drops of 2 M sulfuric acid solution at room temperature. When using the lap top method for copper(II) perchlorate, cupric formate, a proper crystal could be identified within one hour as well. SSC methods were used for the first time to make a copper sulfate crystal via chemical reaction. We can make a copper(II) sulfate crystal using a simple method which is easier, safer and saves time in class. And since a small quantity of chemicals are being used in SSC chemical methods, waste is greatly reduced. This lessens the amount of environmental problems caused by the experiment. This can be helpful in preserving nature. In addition the cost of chemical and laboratory equipment is greatly reduced because it uses material that we find in our daily lives. There will be continued study of small-scale methods such as improvement of new programs, study and training of teachers, and securing SSC tools. I would like to suggest such as SSC methods are applicable in elementary School Science. I would like it to become a wide spread program.

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • 박훈재;나경환;조남선;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.140-143
    • /
    • 1997
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding, the normal pressure and the contact surface expansion are selected as process parameters governing the bonding condition. The critical pressure required for the bonding at the interface is obtained by solving a "local extrusion" using a slip line meyhod. A viscoplastic finite element method is used to analyze the steady state extrusion process. The boundary profile of bi-metal rod is predicted by tracking a particle path adjacent to interface surface. The variations of contact surface area and the normal pressure along the interface profile are predicted and compared to those by experiments.

  • PDF

Galvanic Corrosion of AZ31 Mg Alloy Contacting with Copper

  • Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.151.1-151.1
    • /
    • 2017
  • This work studied the corrosion behavior of AZ31 Mg alloy galvanically coupled with Cu during immersion in 0.1 and 0.5 M NaCl solutions by in-situ observation and galvanic corrosion current measurement using a zero resistance ammeter. The corrosion behavior of AZ31 Mg alloy was also studied by salt spray test. The average galvanic corrosion density during 2 h immersion in 0.1 NaCl solution was found to decrease as an exponential function with increasing the surface area ratios between AZ31:Cu or with increasing the distance between AZ31 and Cu. The corrosion of electrodeposited Cu on AZ31 Mg alloy was concentrated at the area next to Cu (about 5 mm for immersion test and 2 mm for salt spray test) and pitting corrosion was accelerated at the area beyond the severely corroded area by the galvanic coupling effect.

  • PDF

Effect of Cu Dopping in Fe-35%Ni Sheet on Electromagnetic Properties (구리농도에 따른 Fe-Ni박막의 전자기적 특성에 대한 효과)

  • Han, S.S.;Koo, DY;Choi, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.344-345
    • /
    • 2015
  • Various concentration of copper was dopped in Fe-35%Ni thin sheet by electroforming and their electromagnetic, surface properties were determined. Microstructure observation by scanning electron microscopy revealed that the thin sheet had columnar grains with about 150 nm long. Phase analysis by X-ray diffractometry revealed that the alloy thin sheets were fine crystalline. The average surface roughnesses measured by atomic force microscopy (AFM) were about 14.38 nm. Nano hardnesses determined by tribo-nano indenter were 4.13 GPa. The surface resistances were 2.28 ohm/sq. The maximum magnetization, residual magnetization and coercive force depended on the copper concentration.

  • PDF