• Title/Summary/Keyword: Copper nitride film

Search Result 16, Processing Time 0.022 seconds

Effects of metal dopant content on mechanical properties of Ti-Cu-N films

  • Hyun S. Myung;Lee, Hyuk M.;Kim, Sang S.;Jeon G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.37-37
    • /
    • 2001
  • TiN coatings were applied for VarIOUS application fields, because of a good wear-resistance and a high hardness. Typically, TiN thin films show the hardness of 25GPa and friction coefficient of 0.6. However, in many field, one is looking for a more improved tool which has low friction coefficient and high wear resistance. The main motivation of this study is to characterize the influence of copper dopant content on TiN thin films. Ti-Cu-N thin films were deposited onto D2 steel substrates by PVD processing with various magnetron current densities (Cu contents). In this work, we synthesized titanium nitride films similar with reported typical titanium nitride films and synthesized Ti-Cu-N thin films with the addition of elemental copper which is measured improved hardness more than pure TiN films with copper content variables. This films has preferred oriented films of (111) direction. In addition, It was found that there is a strong correlation between content of various metal and film characteristics such as preferred orientation, grain size, hardness and friction coefficient and so, in future study, improved mechanical properties of TiN films can be controlled by change in target current density. The Ti-Cu-N film will show apparent hardness improvement and mechanical properties enhancement, when doping element is added onto TiN thin films. Film structure, chemical composition, mechanical properties were investigated by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy(EDS), wear resistance tester and nanohardness tester.

  • PDF

The Microstructure and physical properties of electroplated Cu films (열처리에 따른 Cu 전해도금막의 미세구조 및 물리적성질 변화)

  • 권덕렬;박현아;김충모;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.72-78
    • /
    • 2004
  • Cu seed layers deposited by magnetron sputtering onto tantalum nitride barrier films were treated with ECR plasma and then the copper films were electroplated and rapid thermal annealed in an argon or nitrogen atmosphere at various temperatures ranging from 200 to $500^{\circ}C$. Changes in the microstructure and physical properties of the copper films electroplated on the hydrogen ECR plasma cleaned copper seed layers were investigated using X-ray diffraction (XRD), electron back-scattered diffraction (EBSD), and atomic force microscopy (AFM) analyses. It was found that the copper film undergoes complete recrystallization during annealing at a temperature higher than $400^{\circ}C$. The resistivity of the Cu film tends to decrease and the degree of (111) preferred orientation tends to increase as the annealing temperature increases. Theoptimum annealing condition for obtaining the film with the lowest resistivity, the smoothest surface and the highest degree of the (111) preferred orientation is rapid thermal annealing in a nitrogen atmosphere at $400^{\circ}C$ for 120 s. The resistivity and the surface roughness of the electroplated copper film annealed under this condition are 1.98 $\mu$O-cm and 17.77 nm, respectively.

Characteristics of TaN by Atomic Layer Deposition as a Copper Diffusion Barrier (ALD법을 이용해 증착된 TaN 박막의 Cu 확산방지 특성)

  • Na, Kyoung-Il;Hur, Won-Nyung;Boo, Sung-Eun;Lee, Jung-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.195-198
    • /
    • 2004
  • For a diffusion barrier against copper, tantalum nitride films have been deposited on $SiO_{2}$ by atomic layer deposition (ALD), using PEMAT(Pentakis(ethylmethylamino)tantalum) and $NH_{3}$ as precursors, Ar as purging gas. The deposition rate of TaN at substrate temperature $250^{\circ}C$ was about $0.67{\AA}$ per one cycle. The stability of TaN films as a Cu diffsion barrier was tested by thermal annealing for 30 minutes in $N_{2}$ ambient and characterized through XRD, sheet resistance, and C-V measurement(Cu($1000{\AA}$)/TaN($50{\AA}$)/$SiO_{2}$($2000{\AA}$)/Si capacitor fabricated), which prove the TaN film maintains the barrier properties Cu below $400^{\circ}C$.

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • Park, Jae-Hyeong;Han, Dong-Seok;Mun, Dae-Yong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

Reliability Measurements and Thermal Stabilities of W-C-N Thin Films Using Nanoindenter (Nanoindenter를 이용한 W-C-N 박막의 신뢰도 측정과 열적 안정성 연구)

  • Kim, Joo-Young;Oh, Hwan-Won;Kim, Soo-In;Choi, Sung-Ho;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.200-204
    • /
    • 2011
  • In this paper, we deposited the tungsten carbon nitride (W-C-N; nitrogen gas flow of 2 sccm) and tungsten carbon (W-C) thin film on silicon substrate using rf magnetron sputter. Then the thin films annealed at $800^{\circ}C$ during 30 minute ($N_2$ gas ambient) for thermal damage. Nano-indenter was executed 16 points on thin film surface to measure the thermal stability, and we also propose the elastic modulus and the Weibull distribution, respectively. This nanotribology method provides statistically reliable information. From these results, the W-C-N thin film included nitrogen gas flow is more stable for film uniformities, physical properties and crystallinities than that of not included nitrogen gas flow.

Tungsten Nitride Thin Film Deposition for Copper Diffusion Barrier by Using Atomic Layer Deposition

  • Hwang, Yeong-Hyeon;Jo, Won-Ju;Kim, Yeong-Hwan;Kim, Yong-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.300-300
    • /
    • 2011
  • 알루미늄을 이용한 배선은 반도체 소자가 초집적화와 초소고속화 됨에 따라, 피로현상과 지연시간 등 배선으로서의 많은 문제점을 가지고 있어, 차세대 배선 재료로서 전기적인 특성 등이 우수한 구리에 대한 연구가 많이 진행되고 있다. 하지만, 구리는 낮은 온도에서 확산이 잘되어 배선 층간의 절연에 문제점을 야기 시킨다. 따라서, 구리를 배선에 적용하여 신뢰성 있는 제품을 만들기 위해서는 확산방지막이 필요하다. 확산방지막은 집적화와 더불어 배선의 두께가 줄어 듦에 따라 소자의 특성에 영향을 미치지 않는 범위 내에서 저항은 낮고, 두께는 얇아야 하며, 높은 종횡비를 갖는 구조에서도 균일한 박막을 형성하여야 하므로, 원자층 증착공정을 이용한 연구가 주를 이루고 있다. 텅스텐 질화막을 이용한 확산방지막은 WF6 전구체를 이용한 보고가 많지만, 높은 증착 온도와 부산물로 인한 부식가능성 이라는 문제점을 안고 있다. 따라서 본 연구에서는, 기존의 할라이드 계열을 이용한 원자층 증착공정의 단점을 보완하기 위하여, 아마이드 계열의 전구체를 사용하여 텅스텐 질화막을 형성하였으며, 이를 통해 공정온도를 낮출 수 있었다.

  • PDF