• Title/Summary/Keyword: Copper foil

Search Result 121, Processing Time 0.029 seconds

A Development of High-Durability Copper Foil Materials for Clock Spring Cable Using Grain Size Control Techniques (결정립 제어 기술을 이용한 클락스프링 케이블용 고내구 동박 소재 개발)

  • Chae, Eul Yong;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.20-25
    • /
    • 2021
  • Flexural resistance evaluation of FFC (Flexible Flat Cable) was performed according to the grain size of rolled copper foil by adding 0.1wt% silver (Ag) and electrodeposited copper foil by slitting method after heat-treatment. These methods are aimed at enhancing the flexural durability of the FFC by growing the grain size of copper foil. By increasing the grain size of the copper foil and minimizing the miss-orientation at grain boundaries, the residual stress at the grain boundaries of the copper foil is reduced and the durability of the FFC is improved. Maximizing an average grain size of copper foil can be got a good solution in order to enhance the durability of the FFC or FPCB (Flexible Printed Circuit Board).

Fabrication of copper thin foils with 36 microns by cold rolling (냉간 압연 공정에 의한 두께 $36{\mu}m$ 동극박 제조 공정 해석)

  • Lee, S.H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.413-416
    • /
    • 2007
  • In general, by means of the electrodepositing technique, a copper foil sample was prepared with a high purity and a high density. But the mechanical properties of the electrodepositing copper foil was lower than it's the rolling copper foil. However, the production of copper foil with approximately 36 microns thick in rolling process was very difficult. This paper describes the outline of the high accuracy cold rolling in 6 high mill which was developed for the purpose of rolling very thin accurate gauge copper foil(36 micron thick), and give several rolling characteristic of 600 mm wide copper foil. a) Large strain can be accumulated pass by pass in industrial multi-pass rolling processing to overcome large critical strain for thickness accuracy through optimization of rolling schedule. b) Also, permissible tension for rolling 0.45 $\sim$ 0.036 mm thick copper strip stably in accordance with the each pass work had been established by FEM simulation results. c) During the plate rolling process, considerable values of the forces of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation region. A numerical simulation of roll deflection during cold rolling is presented in the paper. d) The proposed pass schedule can roll very thin copper foil of 36 micron thickness to a tolerance of ${\pm}1$ microns. The validity of simulated results was verified into rolling experiments on the copper foil.

  • PDF

The Effect of Arabic Gum on the Copper Electrodeposition using Titanium Substrate (티타늄 기지을 이용한 구리 전해도금 시 Arabic Gum 첨가제의 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Lee, Hyun-Woo;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.725-730
    • /
    • 2006
  • The purpose of this study is to identify the effect of additives during copper electrodeposition. Additives such as arabic gum, chloride ions and glue were used in this study. Electrochemical experiments allied to SEM and roughness examination were performed to characterize of the copper foil in the presence of additives. In the production of electrodeposited copper foil, the surface roughness and grain size of the copper foil can be controlled by addition additives. on this study, the more uniform and hemispherical copper crystals are during the initial stages, the smaller crystal size and surface roughness of copper foil are. The surface roughness of copper foil electrodeposited at the current density of 500 $mA/cm^2$ under galvanostatic mode for 60 seconds has a minimum value of 0.136 ${\mu}$m when adding 2 ppm of arabic gum.

Thick Graphene Embedded Metal Heat Spreader with Enhanced Thermal Conductivity

  • Park, Minsoo;Chun, Kukjin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.234-237
    • /
    • 2014
  • In this paper, a copper foil-thick grapheme (thin graphite sheet)-copper foil structure is reported to achieve mechanically strong and high thermal conductive layer suitable for heat spreading components. Since graphene provides much higher thermal conductivity than copper, thick graphene embedded copper layer can achieve higher effective thermal conductivity which is proportional to graphene/copper thickness ratio. Since copper is nonreactive with carbon material which is graphene, chromium is used as adhesion layer to achieve copper-thick graphene-copper bonding for graphene embedded copper layer. Both sides of thick graphene were coated with chromium as an adhesion layer followed by copper by sputtering. The copper foil was bonded to sputtered copper layer on thick graphene. Angstrom's method was used to measure the thermal conductivity of fabricated copper-thick graphene-copper structure. The thermal conductivity of the copper-thick graphene-copper structures is measured as $686W/m{\cdot}K$ which is 1.6 times higher than thermal conductivity of pure copper.

Growth of Graphene on Electro-polished Copper Foil by Thermal CVD

  • Jin, Xiaozhan;Kim, Sung-Jin;Seo, Eun-Kyoung;Boo, Doo-Wan;Lee, Jung-Ah;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.410-410
    • /
    • 2012
  • The continuous monolayer graphene was synthesized on electro-polished copper foil. Electro-polishing sticks off the coating layer of copper foil, which prevents the continuous graphene growth. The quality of continuous graphene is dependent on roughness of copper foil. Copper foil roughness could be controlled by changing polishing condition. The effects of working voltage (4-6 V) and time (30-70 sec) for electro-polishing were systematically examined. The change of surface roughness was checked with AFM.

  • PDF

Microstructure analysis of 8 ㎛ electrolytic Cu foil in plane view using EBSD and TEM

  • Myeongjin Kim;Hyun Soon Park
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.2.1-2.6
    • /
    • 2022
  • With the lightening of the mobile devices, thinning of electrolytic copper foil, which is mainly used as an anode collection of lithium secondary batteries, is needed. As the copper foil becomes ultrathin, mechanical properties such as deterioration of elongation rate and tear phenomenon are occurring, which is closely related to microstructure. However, there is a problem that it is not easy to prepare and observe specimens in the analysis of the microstructure of ultrathin copper foil. In this study, electron backscatter diffraction (EBSD) specimens were fabricated using only mechanical polishing to analyze the microstructure of 8 ㎛ thick electrolytic copper foil in plane view. In addition, EBSD maps and transmission electron microscopy (TEM) images were compared and analyzed to find the optimal cleanup technique for properly correcting errors in EBSD maps.

Graphene Growth on the Cobalt and Nickel Sputtered Cu foil Depending on the Annealing Time (코발트와 니켈이 스퍼터링된 구리 포일에서 어닐링 시간에 따른 그래핀 성장)

  • Oh, Ye-Chan;Lee, Woo-Jin;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.124-132
    • /
    • 2021
  • Graphene which grown on the cobalt or nickel sputtered copper foil depending on the annealing time was studied. Graphene on the copper foil grown by chemical vapor deposition was compared to those on cobalt or nickel sputtered copper foil by using a RF (Radio Frequency) magnetron sputtering at room temperature. FLG(few-layer graphene) was identified independent of substrates by Raman and X-Ray Photoelectron Spectroscopy analyses. On copper foil, size and area fraction of the graphene growth increased until 30 minutes annealing and then didn't changed. Comparing to that, graphene on the cobalt refined till 50 minutes annealing, after then the effect disappeared which means a similar shape to that on copper foil. On nickel the graphene refined irrespective of annealing time that is possibly because of the complete solid solution of nickel with copper.

The study of Copper foil surface treatment for Flexible Copper Clad Laminate (FCCL) (플렉시블 동장적층판 개발을 위한 동박표면처리에 관한 연구)

  • Mun Won-Cheol;Lee Chang-Yong;Lee Jae-Hong;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.24-26
    • /
    • 2006
  • The copper foil of 10fm of thickness was prepared, and the surface treatment on the copper foil was done by the method of the electrolytic plating in the acid solution with the sulfate ion as a purpose to remove the main element of the surface contaminant of copper variously. The structure on the surface of the copper foil in this study investigated AFM with SEM the changed phenomenon according to added plating time and current. The phenomenon of the structure's of the oxide on the surface of long plating time and high current growing was confirmed.

  • PDF

Optimized Electroplishing Process of Copper Foil Surface for Growth of Single Layer Graphene with Large Grain Size (큰 결정 크기를 가지는 단일층 그래핀 성장을 위한 구리 호일의 전해연마 공정 최적화)

  • Kim, Jaeeuk;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Graphene grown on copper-foil substrates by chemical vapor deposition (CVD) has been attracting interest for sensor applications due to an extraordinary high surface-to-volume ratio and capability of large-scale device fabrication. However, CVD graphene has a polycrystalline structure and a high density of grain boundaries degrading its electrical properties. Recently, processes such as electropolishing for flattening copper substrate has been applied before growth in order to increase the grain size of graphene. In this study, we systemically analyzed the effects of the process condition of electropolishing copper foil on the quality of CVD graphene. We observed that electropolishing process can reduce surface roughness of copper foil, increase the grain size of CVD graphene, and minimize the density of double-layered graphene regions. However, excessive process time can rather increase the copper foil surface roughness and degrade the quality of CVD graphene layers. This work shows that an optimized electropolishing process on copper substrates is critical to obtain high-quality and uniformity CVD graphene which is essential for practical sensor applications.

Development of the Copper Core Balls Electroplated with the Solder of Sn-Ag-Cu

  • Imae, Shinya;Sugitani, Yuji;Nishida, Motonori;kajita, Osamu;Takeuchi, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1207-1208
    • /
    • 2006
  • We developed the copper core ball electroplated with Sn-Ag-Cu of the eutectic composition which used mostly as Pb free solder ball with high reliability. In order to search for the practicality of this developed copper core ball, the evaluation was executed by measuring the initial joint strength of the sample mounted on the substrate and reflowed and by measuring the joint strength of the sample after the high temperature leaving test and the constant temperature and the humidity leaving test. This evaluation was compered with those of the usual other copper core balls electroplated with (Sn,Sn-Ag,Sn-Cu,Sn-Bi) and the Sn-Ag-Cu solder ball.

  • PDF