• Title/Summary/Keyword: Copper exposure

Search Result 171, Processing Time 0.029 seconds

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Transition Characteristics and Risk Assessment of Heavy Metal(loid)s in Barley (Hordeum vulgare L.) Grown at the Major Producing Districts in Korea

  • Kim, Da-Young;Kim, Won-Il;Yoo, Ji-Hyock;Kwon, Oh-Kyung;Cho, Il Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • BACKGROUND: The concern over heavy metal(loid)s in arable land and agricultural products increases for public health in recent years. This study aims to identify transition characteristics of heavy metal(loid)s and to assess dietary risk in barley grown at the major producing districts in Korea. METHODS AND RESULTS: The soil and barley samples were collected from 38 locations around the major producing districts at Jeollabuk-do in Korea for the propose of examining the concentrations of heavy metal(loid)s. The 34 barley samples were separately purchased on the market for the same survey. The average concentration and range of arsenic (As), cadmium (Cd) and lead (Pb) in barley grown at the major producing districts in Korea were 0.037 (0.016-0.094), 0.028 (0.004-0.083) and 0.137 (0.107-0.212) mg kg-1, respectively. Currently, the maximum allowable level for barley Pb is set at 0.2 mg kg-1 in Korea, and the monitoring results suggested that some samples exceeded the maximum allowable level and required appropriate farming management. Bio-concentration factor values by heavy metal(loid)s in barley were high at Cd, copper (Cu) and zinc (Zn), similar to other crops, while As and Pb were low, indicating low transferability. CONCLUSION: Human exposure to As, Cd and Pb through dietary intake of barley might not cause adverse health effects due to relatively low concentrations, although the Pb in some barley was detected higher than the maximum allowable level. Further study on uptake and accumulation mechanism of Pb by barley might be required to assess the human health risk associated with soil contamination.

Evaluating Activation for 50 MeV Cyclotron Irradiation Service using Monte Carlo Method and Inventory Code (50 MeV 사이클로트론 조사 서비스로 인한 방사화 평가)

  • Kim, Sangrok;Kim, Gi-sub;Heo, Jaeseung;Ahn, Yunjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.415-427
    • /
    • 2021
  • Korea Institute of Radiological and Medical Sciences has provided various beam irradiation services to researchers using a 50 MeV cyclotron beam line. In particular, since the neutron beam service uses the nuclear reaction between protons and beryllium, the possibility of activation of the irradiated sample increases by using a high current. In this study, MCNP 6.2 and FISPACT-II 4.0 were used to evaluate the possible activation during the 35 MeV 20 ㎂ neutron beam service, which is preferred by the researchers. As a result of the calculation, if the iron, copper, and tungsten samples were irradiated for more than 1 hour, long-lived radioisotopes were produced and their radioactivity exceeded the standard level for self-disposal. Under the conditions of 2 hours of daily irradiation, no activation occurred in the building materials, and the internal exposure of workers due to air activation inside the irradiation room was very insignificant. And when this air was discharged to environment, the radioactivity including this air was also satisfied the emission standard.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Evaluation of the contamination Level of Inland Pollution Sources Flowing into Taeanhaean National Park in Summer and Fall (2017-2018) (태안해안국립공원 연안으로 유입되는 하계-추계 육상오염원의 오염도 평가(2017~2018))

  • Hwang, Da Hye;Kim, Jin Hyun;Jang, Seong Geon;Jeong, Won ok;Jeong, Byungkwan
    • Journal of Environmental Science International
    • /
    • v.31 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • This study evaluated the contamination levels of inland pollution sources flowing into Taeanhaean National Park. The nutritional status of influents was assessed by analyzing water quality and trophic status index (TRIX) at 52 stations, and the contamination levels of sediments were evaluated by analyzing eutrophication cleanup index (CIET) and heavy metals at 36 stations. The results of the TRIX analysis showed that 26 of the 52 stations had influents with a TRIX value of 6-10 (poor water quality/very high trophic level), indicating atrocious water quality and high eutrophication levels. The results of the CIET analysis showed that 4 out of the 36 stations were highly contaminated with organic matter. Analysis of heavy metals showed that the copper (Cu) and zinc (Zn) levels exceeded the threshold effects level (TEL) and probable effects levels (PEL) at several stations. In addition, the arsenic (As) level exceeded the threshold effects level at one station, and the levels of the other heavy metals (Cd, Cr6+, Ni, Pb, and Hg) were lower. Most inland pollution sources have been identified as small-scale, but long-term and continuous exposure can negatively affect the marine ecosystem; therefore, it necessary to prepare inland pollution source management standards and measures suitable for the characteristics of the coastal area.

Prioritizing Management Ranking for Hazardous Chemicals Reflecting Aggregate Exposure (통합노출을 고려한 유해물질 관리의 우선순위 선정)

  • Jeong, Ji-Yoon;Jung, Yoo-Kyung;Hwang, Myung-Sil;Jung, Ki-Kyung;Yoon, Hae-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, we configured a system which ranks hazardous chemicals to determine their management priorities based on experts' opinions and the existing CRS (chemical ranking and scoring). Aggregate exposure of food, health functional food, oriental/herbal medicine and cosmetics have been taken into account to determine management priority. In this study, 25 hazardous chemicals were selected, such as cadmium, lead, mercury, and arsenic, etc. These 25 materials were ranked according to their 1) risk (exposure or hazard) indexes, 2) exposure source-based weight, and 3) public interests, which were also formed based on the existing priority ranking system. Cadmium was scored the highest (178.5) and bisphenol A the lowest (56.8). Ten materials -- cadmium, lead, mercury, arsenic, tar, acrylamide, benzopyrene, aluminium, benzene, and PAHs -- scored higher than 100. Eight materials -- aflatoxin, manganese, phthalate, chromium, nitrate/nitrite, ethylcarbamate, formaldehyde, and copper -- recorded scores in the range from 70 to 100. Also evaluated as potential risks were 7 materials; sulfur dioxide, ochratoxin, dioxins, PCBs, fumonisin, methyl mercury, and bisphenol A, and these materials were scored above 50. Then we compared risk index and correlation coefficient of total scores to confirm the validity of the total scores; we analyzed correlation coefficient of parameter and indicator. We discovered that the total score and weight, which has incorporated public interests, were high and statistically significant. In conclusion, the result of this study contributes to strengthening risk assessment and risk management of hazardous chemicals.

Selective Phase Transformation of Arsenopyrite by Microwave Heating and their Enhancement Au Recovery by Thiocyanate Solution (마이크로웨이브 가열에 의한 황비철석의 선택적 상변환과 티오시안산염 용액에 의한 Au 회수율 향상)

  • Han, Oh-Hyung;Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 2014
  • In order to investigate selective phase transformations and to determine the maximum Au leaching factors from microwave treated Au-bearing complex sulfides, a microscope, SEM-EDS analysis, and thiocyanate leaching tests were performed. When the Au-bearing complex sulfides were exposed to microwave heating, increasing the microwave exposure time increased temperature and decreased weight. Arsenopyrite was first selectively transformed to hematite, which formed a concentric rim structure. In this hematite, oxygen and carbon was detected and always showed high iron content and low arsenic content due to arcing and oxidation from microwave heating. The results of the leaching test using microwave treated sample showed that the maximum Au leaching parameters was reached with 0.5 g concentration thiocyanate, 2.0 M hydrochloric acid, 0.3 M copper sulfate and leaching temperature at$60^{\circ}C$. Under the maximum Au leaching conditions, 59% to 96.69% of Au was leached from the microwave treated samples, whereas only 24.53% to 92% of the Au was leached from the untreated samples.

A Study on the Crops Pollution with Heavy Metal (농작물중(農作物中) 중금속오염도(重金屬汚染度)와 1일섭취량(日攝取量) 및 허용기준설정(許容基準設定)에 관(關)한 연구(硏究))

  • Yum, Yong-Tae;Bae, Eun-Sang;Yun, Bae-Joung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.13 no.1
    • /
    • pp.3-12
    • /
    • 1980
  • Certain heavy metals which may lead peoples to poisonous status are widely used in industry and their uses have been increasing along with rapid industrialization of this country. Such an increasement of metal uses aggravates the status of environmental pollution affecting foodstuffs which are the most important life supporting factor of animal and humanbeing. Concerning the safety measures to minimize food-borne transmission of such hazardous metals, surveillance is the backbone of them and probably more so with a potential problem such as intoxication. Theoretically, this surveillance should include the determination of levels of heavy metal toxicants in foods, the determination of food consumption patterns and typical total diet, and the estimation of total load of the metal contaminant from all sources of exposure including air, water, and occupational sources. In recent year, actually, such estimates on the total daily intake of some heavy metals from foods have been made in several developed countries and a wide variation of date by season, locality, and research method was recognized. Also in this country, this kind of research data is vitally needed to make up for the serious shortage or lack of references to estimate the total amount of heavy metal intake of the people. In this study, a modification model for estimation of the total daily intake of cadmium copper, nickel, zinc, and lead through foods was applied and concentrations of the above metals in crops cultivated in this country were measured with atomic absorption spectro photometer to get the following results. 1. Level of heavy metal concentration in crops Generally, the levels of such metals in essential crops such as rice, cucumber, radish. chinese cabbage, apple, pear, grape, and orange are similar or lower than those in Japan and other developed countries. By the way, a striking result on cadmium concentration was increasement of its concentration in rice from $0{\sim}0.035ppm$ in 1970 to 0.11ppm in this study. However, the value is still far below the. Japanese Permissible Lebel of 1.0ppm. 2. Estimation of total daily intake per capita from foods A new model for estimation was devised utilizing levels of metal concentration in foods, amount of food consumed, and other food factors. Based on the above method, the daily intake of cadmium was estimated to be $70.53{\mu}g/man/day$ in average which was as high as the Limit Value of ILO/WHO(up to $71.4{\mu}g/man/day$). Also, 3.89mg of Zinc, 1.65mg of cuppor, 0.32mg of lead were given as the total daily intake per capita by this research. 3. Efficacy of washing or skinning to decrease the amount of metals in crops After washing the crops sufficiently with commercial linear alkylate sulfonate, the concentration of heavy metals could be reduced to $50{\sim}80%$ showing decreasement rate of $20{\sim}50%$. Also, after skinning the fruits, decreasement rate of the heavy metal concentration shelved $0{\sim}50%$.

  • PDF

Expression Pattern of Antioxidant Enzymes Genes in the Ventral Prostates of Rats Exposed to Procymidone and/or Testosterone after Castration

  • Lee, Jong-Geol;Yon, Jung-Min;Jung, Ki-Youn;Lin, Chunmei;Jung, A-Young;Lee, Beom-Jun;Yun, Young-Won;Nam, Sang-Yoon
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.265-270
    • /
    • 2011
  • Procymidone is a fungicide with anti-androgenic properties widely used to protect fruits from fungal infection, which induces an excessive reactive oxygen species production in male reproductive organs. In this study, to clarify whether procymidone affect the cellular antioxidant system of prostate at onset of puberty, gene expression patterns of the representative antioxidant enzymes such as cytoplasmic glutathione peroxidase (GPx1), phospholipid hydroperoxide GPx (PHGPx), selenoprotein P (SePP), cytoplasmic copper/zinc superoxide dismutase (SOD1), and manganese SOD (SOD2) were investigated in the rat ventral prostates exposed to procymidone using real-time RT-PCR analyses. Seven-week-old Sprague-Dawley rats castrated at 6 weeks old were treated with procymidone (25, 50, or 100 mg/kg per day) orally for 7 consecutive days after testosterone propionate (0.4 mg/kg per day) administration by subcutaneous injection. As compared to normal control animals, GPx1 mRNA expression in prostates significantly increased by the administration with TP and/or procymidone. However, PHGPx and SOD1 mRNA levels significanatly decreased by over 25 mg/kg of procymidone treatment and SePP and SOD2 mRNA levels was significanatly reduced by over 50 mg/kg of procymidone treatment. These findings indicate that procymidone may affect the antioxidant system of prostatic cells in up-regulation mode of GPx1, but in down-regulation modes of PHGPx, SePP, SOD1, and SOD2, suggesting that procymidone may affect differently the cellular antioxidant system of prostate according to the exposure doses.

Gene Structure and Altered mRNA Expression of Metallothionein in Response to Metal Exposure and Thermal Stress in Miho Spine Loach Cobitis choii (Cobitidae; Cypriniformes) (미호종개 metallothionein 유전자의 구조 및 중금속 노출과 고온 자극에 대한 MT mRNA의 발현 특징 분석)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Gene and promoter structures of metallothionein(MT) from Miho spine loach (Cobitis choii; Cypriniformes) were characterized, and the transcriptional responses to experimental exposures to heavy metals and heat stress were examined. The C. choii metallothionein displayed well-conserved features of teleostean metallothioneins at gDNA, mRNA and amino acid levels. Bioinformatic analysis predicted that the C. choii MT regulatory region potentially possessed various motifs or elements targeted by various transcription factors associated with metal-coordinating regulation (e.g., metal transcription factor-1), immune responses (e.g., nuclear factor kappa B), and thermal modulations (e.g., heat shock factor). Acute heavy-metal exposures to 0.5 or $1.0\;{\mu}M$ of cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni) or zinc (Zn) showed that MT transcription was significantly stimulated by Cd (9.6-fold relative to non-exposed control) and Cu (10.4-fold), only moderately by Mn (2.4-fold), but hardly by Ni and Zn. Elevation of water temperature from $25^{\circ}C$ to $31^{\circ}C$ caused a rapid modulation of MT mRNAs toward upregulation to 9.5-fold; however, afterward the elevated mRNA level slightly decreased during further incubation at $31^{\circ}C$ for 6 h. Results from this study suggest that MT-based expression assay could be a useful basis for better understanding the metal- and/or heat-caused stresses in this endangered fish species.