• Title/Summary/Keyword: Copper electrode

Search Result 377, Processing Time 0.031 seconds

Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process (Mo 하지층의 첨가원소(Ti) 농도에 따른 Cu 박막의 특성)

  • Hong, Tae-Ki;Lee, Jea-Gab
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.484-488
    • /
    • 2007
  • Mo(Ti) alloy and pure Cu thin films were subsequently deposited on $SiO_2-coated$ Si wafers, resulting in $Cu/Mo(Ti)/SiO_2$ structures. The multi-structures have been annealed in vacuum at $100-600^{\circ}C$ for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming $TiO_2$ on the surface, which protected the Cu surface against $SiH_4+NH_3$ plasma during the deposition of $Si_3N_4$ on Cu. The formation of $TiO_2$ layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at $400^{\circ}C$ when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of $TiO_2/Cu/Mo(Ti)\;alloy/SiO_2$ structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the $500^{\circ}C-annealed$ Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The $500^{\circ}C$ annealed Cu/Mo($Ti{\geq}60at.%$) gate electrode TFT showed the excellent electrical characteristics ($mobility\;=\;0.488\;-\;0.505\;cm^2/Vs$, on/off $ratio\;=\;2{\times}10^5-1.85{\times}10^6$, subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich($Ti{\geq}60at.%$) alloy underlayer effectively passivated the Cu surface as a result of the formation of $TiO_2$ on the Cu grain boundaries.

Development of Plasma Assisted ALD equipment and electrical characteristic of TaN thin film deposited PAALD method (Plasma Assisted ALD 장비 계발과 PAALD법으로 증착 된 TaN 박막의 전기적 특성)

  • Do Kwan-Woo;kim Kyoung-Min;Yang Chung-Mo;Park Seong-Guen;Na Kyoung-Il;Lee Jung-Hee;Lee Jong-Hyun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.139-145
    • /
    • 2005
  • In the study, in order to deposit TaN thin film using diffusion barrier and bottom electrode we made the Plasma Assisted ALD equipment and confirmed the electrical characteristic of TaN thin films deposited PAALD method, PAALD equipment depositing TaN thin film using PEMAT(pentakis(ethylmethlyamlno) tantalum) Precursor and $NH_3$ reaction gas is aware that TaN thin film deposited of high density and amorphous phase with XRD measurement The degree of diffusion and react ion taking place in Cu/TaN(deposited using 150 W PAALD)/$SiO_2$/Si systems with increasing annealing temperature was estimated from MOS capacitor property and the $SiO_2(600\;\AA)$/Si system surface analysis by C-V measurement and secondary ion material spectrometer(SIMS) after Cu/TaN/$SiO_2(400\;\AA)$ system etching. TaN thin film deposited PAALD method diffusion barrier have a good diffusion barrier property up to $500^{\circ}C$.

  • PDF

Understanding of Non-Thermal Atmospheric Pressure Plasma Characteristics Produced in Parallel Plate Type Geometry

  • Choe, Wonho;Moon, Se Youn;Kim, Dan Bee;Jung, Heesoo;Rhee, Jun Kyu;Gweon, Bomi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.144-144
    • /
    • 2013
  • Non-thermal atmospheric pressure plasmas have recently garnered much attention due to their unique physical and chemical properties that are sometimes significantly different from those of low pressure plasmas. It can offer many possible application areas including nano and bio/medical areas. Many different types of plasma sources have been developed for specific needs, which can be one of the important merits of the atmospheric pressure plasmas since characteristics of the produced plasma depend significantly on operating parameters such as driving frequency, supply gas type, driving voltage waveform, gas flow rate, gas composition, geometrical factor etc. Among many source configurations, parallel plate type geometry is one of the simplest configurations so that it can offer many insights for understanding basic underlying physics. Traditionally, the parallel plate type set up has been studied actively for understanding low pressure plasma physics along with extensive employment in industries for the same reason. By considering that understanding basic physics, in conjunction with plasma-surface interactions especially for nano & bio materials, should be pursued in parallel with applications, we investigated atmospheric pressure discharge characteristics in a parallel plate type capacitive discharge source with two parallel copper electrodes of 60 mm in diameter and several millimeters in gap distance. In this presentation, some plasma characteristics by varying many operating variables such as inter-electrode distance, gas pressure, gas composition, driving frequency etc will be discussed. The results may be utilized for plasma control for widening application flexibility.

  • PDF

Non-Enzymatic Glucose Sensor Based on a Copper Oxide Nanoflowers Electrode Decorated with Pt Nanoparticles (백금 나노입자가 분산된 3차원 산화구리 나노구조체 기반의 글루코스 검출용 비효소적 전기화학 센서 개발)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.705-710
    • /
    • 2018
  • An electrochemical glucose sensor with enzyme-free was fabricated using Pt nanoparticles (Pt NPs) decorated CuO nanoflowers (CuO NFs). 3-D CuO nanoflowers film was directly synthesized on Cu foil by a simple hydrothermal method and Pt NPs were dispersed on the petal surface of CuO NFs through electrochemical deposition. This prepared sample was noted to Pt NPs-CuO NF. Morphology of the Pt NPs-CuO NFs layer was analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The electrochemical properties and sensing performances were investigated using cyclic voltammetry (CV) and chronoamperometry (CA) under alkaline condition. The sensor exhibited a high sensitivity, wide liner range and fast response time. Its excellent sensing performance was attributed to the synergistic effect of the Pt NPs and CuO nanostructure.

The effects of the shape of IDT electrode pair on the characteristics of SFIT filter (IDT형의 전극 형태가 SFIT형 필터의 특성에 미치는 영향)

  • You, Il-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2662-2670
    • /
    • 2009
  • The effect of the reflector type for the SAW filter on the characteristics of the slanted finger IDT filter have been studied by computer simulation. The IDT was evaporated by Aluminum-Copper alloy. The design condition was optimized by the phase shift of the SAWfilter for WCDMA. We have employed that the number of pairs of the input and output IDT are 50 pairs and the thickness are $5,000{\AA}$, and the width and the space of reflector are $3.6{\mu}m$ and $2.0{\mu}m$, respectively. Frequency response of the fabricated SFIT filter has the property that the center frequency is about 190MHz and bandwidth at the 3dB is probably 8.2MHz. And we could obtain that the return loss is less then 16dB, the ripple characteristics is probably 4dB and the triple transit echo is less then 18dB after when we have matched impedance.

Composition Control of a Light Absorbing Layer of CuInSe2 Thin Film Solar Cells Prepared by Electrodeposition (전착법을 이용한 CuInSe2 박막태양전지 광활성층의 조성 조절)

  • Park, Young-Il;Kim, Donghwan;Seo, Kyungwon;Jeong, Jeung-Hyun;Kim, Honggon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • Thin light-active layers of the $CuInSe_2$ solar cell were prepared on Mo-coated sodalime glass substrates by one-step electrodeposition and post-annealing. The structure, morphology, and composition of $CuInSe_2$ film could be controlled by deposition parameters, such as the composition of metallic precursors, the concentration of complexing agents, and the temperature of post-annealing with elemental selenium. A dense and uniform Cu-poor $CuInSe_2$ film was successfully obtained in a range of parametric variation of electrodeposition with a constant voltage of -0.5 V vs. a Ag/AgCl reference electrode. The post-annealing of the film at high temperature above $500^{\circ}C$ induced crystallization of $CuInSe_2$ with well-developed grains. The KCN-treatment of the annealed $CuInSe_2$ films further induced Cu-poor $CuInSe_2$ films without secondary phases, such as $Cu_2Se$. The structure, morphology, and composition of $CuInSe_2$ films were compared with respect to the conditions of electrodeposition and post-annealing using SEM, XRD, Raman, AES and EDS analysis. And the conditions for preparing device-quality $CuInSe_2$ films by electrodeposition were proposed.

Lifetime analysis of organic light-emitting diodes in ITO/Buffer $layer/TPD/Alq_3/LiAl$ structure (유기 발광소자 ITO/Buffer $layer/TPD/Alq_3/LiAl$ 구조에서의 수명 분석)

  • Chung, Dong-Hoe;Choi, Woon-Shik;Park, Kwon-Hwa;Lee, Joon-Ung;Kim, Jin-Chol;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.158-161
    • /
    • 2004
  • We have studied a lifetime in organic light-emitting diodes depending on buffer layer. A transparent electrode of indium-tin-oxide(ITO) was used as an anode. And the cathode for electron injection was LiAl. Phthalocyanine Copper(CuPc), Poly(3,4-ethylenedioxythiophene):poly (PEDOT:PSS), or poly (9-vinylcarbazole)(PVK) material was used as a buffer layer. A thermal evaporation was performed to make a thickness of 40nm of TPD layer at a rate of $0.5{\sim}1\;{\AA}/s$ at a base pressure of $5{\times}10^{-6}\;torr$. A material of tris(8-hydroxyquinolinate) Aluminum($Alq_3$) was used as an electron transport and emissive layer. A thermal evaporation of $Alq_3$ was done at a deposition rate of $0.7{\sim}0.8[{\AA}/s]$ at a base pressure of $5{\times}10^{-6}\;torr$. By varying the buffer material, hole injection at the interface could be controlled because of the change in work function. Devices with CuPc and PEDOT:PSS buffer layer are superior to the other PVK buffer layer.

  • PDF

The Electrical Insulation Characteristics of HTS SMES (초고온초전도 SMES의 절연특성)

  • Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.623-626
    • /
    • 2005
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 77 K should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. Recently, research and development concerning application of the conduction-cooled HTS SMES that is easily movement are actively progressing in Korea. Electrical insulation under cryogenic temperature is a key and an important element in the application of this apparatus. Using multi wrapped copper by polyimide film for HIS SMES, the breakdown characteristics of models for turn-to-turn, that is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on breakdown voltage under ac and impulse voltage in $LN_2$ was carried.

  • PDF

Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites (CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선)

  • Park, Mi-Seon;Bae, Tae-Sung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2016
  • In this study, CuO was introduced on MWCNTs dispersed with Au nanoparticles to improve the glucose sensing capability of electrochemical biosensors. Nano-cluster shaped CuO was synthesized due to the presence of Au nanoparticle, which affects glucose sensing performance. The biosensor featuring CuO/Au@MWCNTs nanocomposite as an electrode material when 0.1 mole of CuO was synthesized showed the highest sensitivity of $504.1{\mu}A\;mM^{-1}cm^{-2}$, which is 4 times better than that of MWCNTs based biosensors. In addition, it shows a wider linear range from 0 to 10 mM and lower limit of detection (LOD) of 0.008 mM. These results demonstrate that CuO/Au@MWCNTs nanocomposite sensors are superior to other CuO based biosensors which are attributed that the nano-cluster shaped CuO is favorable for the electrochemical reaction with glucose molecules.

Self-pressurization Effect and PEMFC Performance Improvement Using Metal Foam Compression (금속 폼 압축에 의한 자가 가압 효과 및 PEMFC 성능 개선)

  • Kim, Hyeonwoo;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.618-623
    • /
    • 2022
  • The bipolar plate is a key component of the polymer electrolyte membrane fuel cell (PEMFC) that transfers reactants and electrons, discharges water and heat as by-products, and serves as a mechanical support for the membrane electrode assembly (MEA). Therefore, the flow field structure of the bipolar plate plays an important role in improving fuel cell performance. In this study, PEMFC performance was investigated with copper foams with different compressibility ratios applied to cathode bipolar plates using a 25 cm2 unit cell. The total resistance decreased as the compressibility ratio of the metal foams increased, and, in particular, the charge transfer and mass transfer resistance were significantly improved compared to the serpentine flow field, lowering voltage loss in medium and high current density region. In the case of pressurized air reactant flow with serpentine structure, fuel cell performance was similar to that of a compressed metal foam flow field (S3) up to the medium current density region, but low performance appeared in the high current density region due to flow field structure limitations.