• Title/Summary/Keyword: Copper Oxide (CuO)

Search Result 179, Processing Time 0.03 seconds

Facile Fabrication of Carbon Nanotubes@CuO Composites by Microwave Method

  • Kim, Tae Hyeong;Cha, Dun Chan;Jeong, Jung-Chae;Lee, Seunghyun
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.113-116
    • /
    • 2021
  • In this study, we report a facile fabrication of multi-walled carbon nanotubes (MWCNTs)-CuO composites synthesized by a microwave method using MWCNTs and copper oxide (CuO). The number of copper hydrate precursors affect the size and number of CuO domains formed along the MWCNTs in the composites. The domain size is controllable from 239 nm to 348 nm. The composites are characterized by transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction (XRD), Raman spectroscopy, and UV-Vis spectroscopy. The CuO produced in the composites is confirmed to be tenorite with a monoclinic crystal structure through the XRD patterns of (-111), (111) and (-202).

Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics (동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구)

  • Hansung Lee;Minsu Kim;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

A Study on Thermal Properties of Ethylene Glycol Containing Copper Oxide Nanoparticles (산화구리 나노분말을 포함하는 에틸렌글리콜 용액의 열전특성에 관한 연구)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.276-280
    • /
    • 2010
  • In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/$Cu_2O$ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be $6.86\;m^2\;g^{-1}$. From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to $90^{\circ}C$. On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.

Removal of Copper Ion with Iron-Oxide-Coated Sand (산화철 피복사에 의한 구리이온제거)

  • 곽명화;우성훈;김익성;박승조
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2000
  • The sand particle was coated with $Fe_3O_4$ and then $Fe_2O_3$ that adsorption capacity was more excellent than $Fe_3O_4$ was mostly found in 2nd step for preparation of iron-oxide-coated sand (IOCS). The copper removal rate was 74.9 percent by adding 30 gram per liter iron-oxide-coated sand from the solution with 5 mg/l Cu in 20 minute. Breakthrough time occurred in 23 hours and adsorption capacity 0.87$\cdot$Cu/g$\cdot$IOCS in case of breakthrough copper concentration was 1.0 mg/l in the continuous test.

  • PDF

Fabrication and Characterization of CuO Thin Film/ZnO Nanorods Heterojunction Structure for Efficient Detection of NO Gas (일산화질소 가스 검출을 위한 CuO 박막/ZnO 나노막대 이종접합 구조의 제작 및 특성 평가)

  • Yoo, Hwansu;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • We report on the efficient detection of NO gas by an all-oxide semiconductor p-n heterojunction diode structure comprised of n-type zinc oxide (ZnO) nanorods embedded in p-type copper oxide (CuO) thin film. The CuO thin film/ZnO nanorod heterostructure was fabricated by directly sputtering CuO thin film onto a vertically aligned ZnO nanorod array synthesized via a hydrothemal method. The transport behavior and NO gas sensing properties of the fabricated CuO thin film/ZnO nanorod heterostructure were charcterized and revealed that the oxide semiconductor heterojunction exhibited a definite rectifying diode-like behavior at various temperatures ranging from room temperature to $250^{\circ}C$. The NO gas sensing experiment indicated that the CuO thin film/ZnO nanorod heterostructure had a good sensing performance for the efficient detection of NO gas in the range of 2-14 ppm under the conditions of an applied bias of 2 V and a comparatively low operating temperature of $150^{\circ}C$. The NO gas sensing process in the CuO/ZnO p-n heterostructure is discussed in terms of the electronic band structure.

Coulometric Titration Study on the Nonstoichiometry in Copper Doped Cobaltous Oxide ((${Co_{1-x}}{Cu_x}$)$_{1-\delta}$ O (전하적정법에 의한 (${Co_{1-x}}{Cu_x}$)$_{1-\delta}$ O의 산소 부정비량 측정)

  • ;Michael Schroeder;Manfred Martin
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.799-804
    • /
    • 2000
  • Coulometric titration experiments have been done for copper doped cobaltous oxide (Co1-xCux)1-$\delta$ O with various dopant concentrations. We present the obtained experimental data and compare our results to those of previous thermogravimetric investigation. The experimental data are fitted by theoretical calculations based on various defect models. For this modeling, we considered different types fo major defects like copper in substitutional and interstitial lattice sites as well as copper vacancy. We also introduced the copper evaporation effect during titration experiment into our consideration.

  • PDF

Fabrication of Copper(II) Oxide Plated Carbon Sponge for Free-standing Resistive Type Gas Sensor and Its Application to Nitric Oxide Detection (프리스탠딩 저항형 가스 센서용 산화구리 무전해 도금 탄소스펀지 제조 및 일산화질소 감지)

  • Kim, Seokjin;Ha, Seongmin;Myeong, Seongjae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.630-635
    • /
    • 2022
  • Copper(II) oxide (CuO), electroless plated on a nitrogen-containing carbon sponge prepared by a melamine sponge thermal treatment, was developed as a nitric oxide (NO) gas sensor that operates without a wafer. The CuO content on the surface of the carbon sponge increased as the plating time increased, but the content of nitrogen known to induce NO gas adsorption decreased. The untreated carbon sponge showed a maximum resistance change (5.0%) at 18 min. On the other hand, the CuO plated sample (CuO30s-CS) showed a maximum resistance change of 18.3% in 8 min. It is considered that the improvement of the NO gas sensing capability was caused by the increase in hole carriers of the carbon sponge and improved movement of electrons due to CuO. However, the NO gas detection resistance of the CuO electroless plated carbon sponge for 60 s decreased to 1.9%. It is considered that the surface of the carbon sponge was completely plated with CuO, resulting in a decrease in the NO gas adsorption capacity and resistance change. Thus, CuO-plated carbon sponge can be used as an effective NO gas sensor because it has fast and excellent resistance change properties, but CuO should not be completely plated on the surface of the carbon sponge.

Annealing Temperature Dependence on the Physicochemical Properties of Copper Oxide Thin Films

  • Park, J.Y.;Kwon, T.H.;Koh, S.W.;Kang, Y.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1331-1335
    • /
    • 2011
  • We report the results of the characterization of Cu oxide thin films deposited by radio frequency (r.f.) magnetron sputtering at different annealing temperatures. The deposited Cu oxide thin films were investigated by scanning electron microscopy, spectroscopic ellipsometry, X-ray diffraction, atomic force microscopy, Xray photoelectron spectroscopy, and contact angle measurements. The thickness of the films was about 180 nm and the monoclinic CuO phase was detected. The $CuO_2$ and $Cu(OH)_2$ phases were grown as amorphous phase and the ratio of the three phases were independent on the annealing temperature. The surface of Cu oxide films changed from hydrophilic to hydrophobic as the annealing temperature increased. This phenomenon is due to the increase of the surface roughness. The direct optical band gap was also obtained and laid in the range between 2.36 and 3.06 eV.

Cu-SiO2 Hybrid Bonding (Cu-SiO2 하이브리드 본딩)

  • Seo, Hankyeol;Park, Haesung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • As an interconnect scaling faces a technical bottleneck, the device stacking technologies have been developed for miniaturization, low cost and high performance. To manufacture a stacked device structure, a vertical interconnect becomes a key process to enable signal and power integrities. Most bonding materials used in stacked structures are currently solder or Cu pillar with Sn cap, but copper is emerging as the most important bonding material due to fine-pitch patternability and high electrical performance. Copper bonding has advantages such as CMOS compatible process, high electrical and thermal conductivities, and excellent mechanical integrity, but it has major disadvantages of high bonding temperature, quick oxidation, and planarization requirement. There are many copper bonding processes such as dielectric bonding, copper direct bonding, copper-oxide hybrid bonding, copper-polymer hybrid bonding, etc.. As copper bonding evolves, copper-oxide hybrid bonding is considered as the most promising bonding process for vertically stacked device structure. This paper reviews current research trends of copper bonding focusing on the key process of Cu-SiO2 hybrid bonding.

Decomposition and Reduction of Nitrogen Oxide on Copper Loaded Mordenites (동이 담지된 모더나이트 상에서 NO의 분해 및 환원 반응)

  • Lee, Chang-Yong;Mo, Yong-Ki;Choi, Ko-Yeol
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.111-117
    • /
    • 2002
  • Catalytic decomposition and reduction of NO have been carried out on copper loaded mordenites in a packed bed flow reactor. For the decomposition of NO, $Cu^{\circ}/HM$ exhibited higher activities than CuO/HM at high copper content, which may be related to the difference in the amount of $Cu^{2+}$ ions and the reducibility of CuO between $Cu^{\circ}/HM$ and Cuo/HM. However, $Cu^{\circ}/HM$ showed higher reduction activities than CuO/HM at low copper content. This result may be dependent on the difference in the amount of high-reducibility CuO between $Cu^{\circ}/HM$ and CuO/HM.

  • PDF