DOI QR코드

DOI QR Code

Annealing Temperature Dependence on the Physicochemical Properties of Copper Oxide Thin Films

  • Park, J.Y. (Department of Chemistry, Mechanical Engineering, Pukyong National University) ;
  • Kwon, T.H. (Department of Electronics, Mechanical Engineering, Pukyong National University) ;
  • Koh, S.W. (Department of Division of Mechanical Engineering, Pukyong National University) ;
  • Kang, Y.C. (Department of Chemistry, Mechanical Engineering, Pukyong National University)
  • Received : 2011.02.01
  • Accepted : 2011.02.22
  • Published : 2011.04.20

Abstract

We report the results of the characterization of Cu oxide thin films deposited by radio frequency (r.f.) magnetron sputtering at different annealing temperatures. The deposited Cu oxide thin films were investigated by scanning electron microscopy, spectroscopic ellipsometry, X-ray diffraction, atomic force microscopy, Xray photoelectron spectroscopy, and contact angle measurements. The thickness of the films was about 180 nm and the monoclinic CuO phase was detected. The $CuO_2$ and $Cu(OH)_2$ phases were grown as amorphous phase and the ratio of the three phases were independent on the annealing temperature. The surface of Cu oxide films changed from hydrophilic to hydrophobic as the annealing temperature increased. This phenomenon is due to the increase of the surface roughness. The direct optical band gap was also obtained and laid in the range between 2.36 and 3.06 eV.

Keywords

References

  1. Nakano, Y.; Saeki, S.; Morikawa, T. Appl. Phys. Lett. 2009, 94, 022111. https://doi.org/10.1063/1.3072804
  2. Kbayashi, H.; Nakamura, T.; Takahashi, N. Mater. Chem. Phys. 2007, 106, 292. https://doi.org/10.1016/j.matchemphys.2007.06.008
  3. Ray, S. C. Sol. Energy Mater. Sol. Cells 2001, 68, 307. https://doi.org/10.1016/S0927-0248(00)00364-0
  4. Oral, A. Y.; Mensur, E.; Aslan, M. H.; Basaran, E. Mater. Chem. Phys. 2004, 83, 140. https://doi.org/10.1016/j.matchemphys.2003.09.015
  5. Lu, H.-C.; Chu, C.-L.; Lai, C.-Y.; Wang, Y.-H. Thin Solid Films 2009, 517, 4408. https://doi.org/10.1016/j.tsf.2009.02.079
  6. Hoa, N. D.; An, S. Y.; Dung, N. Q;. Quy, N. V.; Kim, D. Sens. Actuators B 2010, 148, 239.
  7. Barreca, D.; Comini, E.; Gasparotto, A.; Maccato, C.; Sada, C.; Sberveglieri, G.; Tondello, E. Sens. Actuators, B 2009, 141, 270. https://doi.org/10.1016/j.snb.2009.05.038
  8. Medina-Valtierra, J.; Ramírez-Oriz, J.; Arroyo-Rojas, V. M.; Ruiz, F. Appl. Catal. A 2003, 238, 1. https://doi.org/10.1016/S0926-860X(02)00074-1
  9. Wong, L. M.; Chiam, S. Y.; Huang, J. Q.; Wang, S. J.; Pan, J. S.; Chim, W. K. J. Appl. Phys. 2010, 108, 033702. https://doi.org/10.1063/1.3465445
  10. Mahalingam, T.; Chitra, J. S. P.; Chu, J. P.; Moon, H.; Kwon, H. J.; Kim, Y. D. J. Mater. Sci.: Mater. Electron. 2006, 17, 519. https://doi.org/10.1007/s10854-006-8231-3
  11. Fernando, C. A. N.; Bandara, T. M. W. J.; Wethasingha, S. K. Sol. Energy Mater. Sol. Cells 2001, 70, 121. https://doi.org/10.1016/S0927-0248(00)00416-5
  12. Ristova, M.; Neskovska, R.; Mirceski,V. Sol. Energy Mater. Sol. Cells 2007, 91, 1361. https://doi.org/10.1016/j.solmat.2007.05.018
  13. Markworth, P. R.; Liu, X.; Dai, J. Y.; Fan, W.; Marks, T. J.; Chang, R. P. H. J. Mater. Res. 2001, 16, 2408. https://doi.org/10.1557/JMR.2001.0330
  14. Golden, T. D.; Shumsky, M. G.; Zhou, U.; Vander Werf, R. A.; Van Leeuwen, R. A.; Switzer, J. A. Chem. Mater. 1996, 8, 2499. https://doi.org/10.1021/cm9602095
  15. Ozer, N.; Tepehan, F. Sol. Energy Mater. Sol. Cells 1993, 30, 13. https://doi.org/10.1016/0927-0248(93)90027-Z
  16. Ray, S. C. Sol. Energy Mater. Sol. Cells 2001, 68, 307. https://doi.org/10.1016/S0927-0248(00)00364-0
  17. Kosugi, T.; Kaneko, S. J. Am. Chem. Soc. 2004, 81, 3117.
  18. Chen, A.; Long, H.; Li, X.; Li, Y.; Yang, G.; Lu, P. Vacuum 2009, 83, 927. https://doi.org/10.1016/j.vacuum.2008.10.003
  19. Ma, X.; Wang, G.; Yukimura, K.; Sun, M. Surf. Coat. Technol. 2007, 201, 6712. https://doi.org/10.1016/j.surfcoat.2006.09.033
  20. Figueiredo, V.; Elangovan, E.; Gonçalves, G.; Barquinha, P.; Pereira, L.; Franco, N.; Alves, E.; Martins, R.; Fortunato, E. Appl. Surf. Sci. 2008, 254, 3949. https://doi.org/10.1016/j.apsusc.2007.12.019
  21. Ogwu, A. A.; Bouquerel, E.; Ademosu, O.; Moh, S.; Crossan, E.; Placido, F. J. Phys. D: Appl. Phys. 2005, 38, 266. https://doi.org/10.1088/0022-3727/38/2/011
  22. Park, J. Y.; Heo, J. K.; Kang, Y. C. Bull. Korean Chem. Soc. 2010, 31, 397. https://doi.org/10.5012/bkcs.2010.31.02.397
  23. Kang, Y. C.; Khanal, R.; Park, J. Y.; Ramsier, R. D.; Khatri, H.; Marsillac, S. J. Vac. Sci. Technol., B 2010, 28, 545. https://doi.org/10.1116/1.3425634
  24. JCPDS Database, International Center for Diffraction Data. 2003, PDF 80-1917.
  25. Shi, F.; Cui, C. Inorg. Mater. 2010, 46, 565. https://doi.org/10.1134/S0020168510050237
  26. Yoon, K. H.; Choi, W. J.; Kang, D. H. Thin Solid Films 2000, 372, 250. https://doi.org/10.1016/S0040-6090(00)01058-0
  27. Papadimitropoulos, G.; Vourdas, N.; Davazoglou, V. Em.; Vamvakas, D. Thin Solid Films 2006, 515, 2428. https://doi.org/10.1016/j.tsf.2006.06.002
  28. Al-Kuhaili, M. F. Vacuum 2008, 82, 623. https://doi.org/10.1016/j.vacuum.2007.10.004
  29. Petrik, P.; Biró, L. P.; Fried, M.; Lohner, T.; Berger, R.; Schneider, C.; Gyulai, J.; Ryssel, H. Thin Solid Films 1998, 315, 186. https://doi.org/10.1016/S0040-6090(97)00349-0
  30. Venkataraj, S.; Kappertz, O;. Liesch, Ch.; Detemple, R.; Jayavel, R.; Wuttig, M. Vacuum 2004, 75, 7. https://doi.org/10.1016/j.vacuum.2003.12.127
  31. Mohamed, S. H.; Venkataraj, S. Vacuum 2007, 81, 636. https://doi.org/10.1016/j.vacuum.2006.08.006
  32. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: 1979; p 82.
  33. Chusuei, C. C.; Brookshier, M. A.; Goodman, D. W. Langmuir 1996, 15, 2806.
  34. Morales, J.; Sanchez, L.; Martín, F.; Ramos-Barrado, J. R.; Sanchez, M. Thin Solid Films 2005, 474, 133. https://doi.org/10.1016/j.tsf.2004.08.071
  35. Miyamura, T.; Koike, J. Mater. Sci. Eng. A 2007, 445-446, 620. https://doi.org/10.1016/j.msea.2006.09.097
  36. Wong, L. M.; Chiam, S. Y.; Huang, J. Q.; Wang, S. J.; Pan, J. S.; Chim, W. K. J. Appl. Phys. 2010, 108, 033702. https://doi.org/10.1063/1.3465445
  37. Marmur, A. Langmuir 2003, 19, 8343. https://doi.org/10.1021/la0344682
  38. Lin, F.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Langmuir 2008, 24, 4114. https://doi.org/10.1021/la703821h
  39. Zhang, J. P.; Zhang, L. D.; Zhu, L. Q.; Zhang, Y.; Liu, M.; Wang, X. J. J. Appl. Phys. 2007, 102, 114903. https://doi.org/10.1063/1.2817255
  40. Bihn, J. H.; Park, J. Y.; Kang, Y. C. J. Korean. Phys. Soc. in print.
  41. Roy, S. C.; Sharma, G. L.; Bhatnagar, M. C. Solid State Commun. 2007, 141, 243. https://doi.org/10.1016/j.ssc.2006.11.007

Cited by

  1. Effect of annealing temperature on morphological, structural and optical properties of nanostructured CuO thin film vol.131, pp.4, 2016, https://doi.org/10.1140/epjp/i2016-16089-3
  2. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid vol.16, pp.03, 2017, https://doi.org/10.1142/S0219581X16500344
  3. A Comparative Study on Structural Growth of Copper Oxide Deposited by dc-MS and HiPIMS vol.5, pp.10, 2016, https://doi.org/10.1149/2.0251610jss
  4. O thin-film transistors and investigation on the origin of low field effect mobility vol.123, pp.16, 2018, https://doi.org/10.1063/1.4991812
  5. Investigation of physicochemical properties of CuSn-based PAN nanofibers prepared via electrospinning method pp.01422421, 2019, https://doi.org/10.1002/sia.6630
  6. Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances vol.24, pp.22, 2011, https://doi.org/10.1002/adma.201103228
  7. Influence of ion dose on nanostructure morphology and electrical properties of nitrogen implanted-annealed copper vol.9, pp.12, 2014, https://doi.org/10.1049/mnl.2014.0287
  8. Tuning the oxidation states and crystallinlty of copper oxide nanofibers by calcination vol.32, pp.4, 2014, https://doi.org/10.1116/1.4874617
  9. Structural, optical and XPS study of thermal evaporated In2O3thin films vol.4, pp.8, 2017, https://doi.org/10.1088/2053-1591/aa7f59
  10. Effect of annealing temperature on physical characteristics of CuO films deposited by sol-gel spin coating vol.6, pp.11, 2011, https://doi.org/10.1088/2053-1591/ab44f3
  11. Surface characterization and investigation on antibacterial activity of CuZn nanofibers prepared by electrospinning vol.508, pp.None, 2011, https://doi.org/10.1016/j.apsusc.2019.144883