• 제목/요약/키워드: Copper Oxide

검색결과 445건 처리시간 0.031초

Non-sintering Preparation of Copper (II) Oxide Powder for Electroplating via 2-step Chemical Reaction

  • Lee, Seung Bum;Jung, Rae Yoon;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.146-154
    • /
    • 2017
  • In this study, copper (II) oxide was prepared for use in a copper electroplating solution. Copper chloride powder and copper (II) oxide are widely used as raw materials for electroplating. Copper (II) oxide was synthesized in this study using a two-step chemical reaction. Herein, we developed a method for the preparation of copper (II) oxide without the use of sintering. In the first step, copper carbonate was prepared without sintering, and then copper (II) oxide was synthesized without sintering using sodium hydroxide. The optimum amount of sodium hydroxide used for this process was 120 g and the optimum reaction temperature was $120^{\circ}C$ regardless of the starting material.

토끼의 비골 골절에서 산화구리(CuO, copper oxide)의 골재성 효과 (Bone Regeneration Effects of Copper Oxide on Fibular Fracture in Rabbits)

  • 정윤정;이창훈;배일주;남일;정성목;남치주;서강문
    • 한국임상수의학회지
    • /
    • 제20권4호
    • /
    • pp.458-466
    • /
    • 2003
  • The bone regeneration effects of copper oxide on experimentally induced fibular fracture were examined in 36 New Zealand white male rabbits. They were divided into two groups: non-treated group (control group) and copper oxide treated group (treatment group). A fibular fracture was created by an osteotomy in the middle of the fibula and 62.5 mg/kg of copper oxide was orally administrated during 7 days after operation in the treatment group. Radiological findings, histopathological examinations and hematoserological findings were observed to evaluate the bone regeneration effects of copper oxide on fibula fracture during 9 weeks. In radiological findings, the area of bone regeneration at the fracture site of the treatment group was significantly wider from 3 weeks to 6 weeks after administration of copper oxide than those of the control group (p < 0.05). In histopathological examinations, fracture healing in treatment group was faster than in control group. Also, histopathological responses of thick bony trabeculae and new bone marrow formation were shown in the treatment group, whereas many fibrous tissues and cartilages were mainly observed in the control group. No specific effects of copper oxide on the body was found in hematological and serological test during experimental period. These results showed that the copper oxide had a potential therapeutic application in the treatment of fracture and bone trauma.

ReaxFF and Density Functional Theory Studies of Structural and Electronic Properties of Copper Oxide Clusters

  • Baek, Joo-Hyeon;Bae, Gyun-Tack
    • 대한화학회지
    • /
    • 제64권2호
    • /
    • pp.61-66
    • /
    • 2020
  • In this study, we investigate the structural and electronic properties of copper oxide clusters, CunOn (n = 9 - 15). To find the lowest energy structures of copper oxide clusters, we use ReaxFF and density functional theory calculations. We calculate many initial copper oxide clusters using ReaxFF quickly. Then we calculate the lowest energy structures of copper oxide clusters using B3LYP/LANL2DZ model chemistry. We examine the atomization energies per atom, average bond angles, Bader charges, ionization potentials, and electronic affinities of copper oxide clusters. In addition, the second difference in energies is investigated for relative energies of copper oxide clusters.

산화구리 나노분말을 포함하는 에틸렌글리콜 용액의 열전특성에 관한 연구 (A Study on Thermal Properties of Ethylene Glycol Containing Copper Oxide Nanoparticles)

  • 김창규;이경자;이창규
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.276-280
    • /
    • 2010
  • In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/$Cu_2O$ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be $6.86\;m^2\;g^{-1}$. From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to $90^{\circ}C$. On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.

Evolutional Transformations of Copper Nanoparticles to Copper Oxide Nanowires

  • 강민규;윤호규;김영석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.18.2-18.2
    • /
    • 2011
  • We study and analyze here a novel and simple approach to produce copper oxide nanowires in a methanol as an alternative to chemical synthesis routs and VLS-growth method. First, copper oxide nanowires are grown from copper nanoparticles in methanol at $60^{\circ}C$. Nanoparticles are synthesized via inert gas condensation, one of the dry processes. Synthesized nanowires were confirmed via XRD, FESEM and TEM. As a result, all particles have grown to Cu2O nanowires (20~30 nm in diameter, 5~10 um in length; aspect ratio >160~500). Next, these synthesized oxide nanowires are reduced copper nanowires in the furnace under hydrogen flow at $200{\sim}450^{\circ}C$. The evolution of oxide nanowires and their transformation to copper nanowires is studied as a function of time.

  • PDF

Surface Characteristics of Copper Oxide Thin Films with Different Oxygen Ratio

  • 박주연;조준모;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.385-385
    • /
    • 2010
  • Copper oxide thin films were deposited on the p-type Si(100) by r.f. magnetron sputtering as a function of different oxygen concentration. The deposited copper oxide thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM and SE data show that the thickness of the copper oxide films was in the range of 100-400 nm. AFM images show that the surface morphology was depended on the oxygen ratio. The crystal structure of copper oxide films was changed from metallic copper to copper oxide with increasing oxygen concentration. The oxidation states of Cu 2p and O 1s resulted from XPS were consistent with XRD results.

  • PDF

구리/에폭시 계의 필 접착력 분석 (Peel Strength Analyses of Copper/Epoxy System)

  • 최광성;유진;이호영
    • 한국표면공학회지
    • /
    • 제29권4호
    • /
    • pp.238-252
    • /
    • 1996
  • In order to study the effect of interface oxides on the adhesion strength of the copper/epoxy system, copper foils were immersed in black oxide or brown oxide forming solutions before lamination with epoxy prepregs, and variation of peel strength with the treatment time were investigated. Results showed that peel strength decreased rapidly up to 1 minute of treatment lime and remained constant in the case of the black oxide treated specimens, which was accompanied by the thickening of $Cu_2O$ at the Copper/Epoxy interface during the period. In contrast, peel strength increased rapidly up to 1 minute of treatment time and remained constant in the case of the brown oxide treated specimens, which could be ascribed to the thickening of CuO. Subsequent heat treatments of the Copper/Epoxy laminations at $120^{\circ}C$ in air showed that peel strength remained constant in the case of the black oxide treated specimens but decreased gradually in the case of the brown oxide treated specimens. Following XPS analyses revealed that the latter was possibly caused by the coalescence of CuO at the Copper/Epoxy interface into $Cu_2O$.

  • PDF

Effect of the Substrate Temperature on the Copper Oxide Thin Films

  • 박주연;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.71-71
    • /
    • 2010
  • Copper oxide thin films were deposited on the p-type Si(100) by r.f. magnetron sputtering as a function of different substrate temperature. The deposited copper oxide thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM and SE data show that the thickness of the copper oxide films was about 170 nm. AFM images show that the surface roughness of copper oxide films was increased with increasing substrate temperature. As the substrate temperature increased, monoclinic CuO (111) peak appeared and the crystal size decreased while the monoclinic CuO (-111) peak was independent on the substrate temperature. The oxidation states of Cu 2p and O 1s resulted from XPS were not affected on the substrate temperature. The contact angle measurement was also studied and indicated that the surface of copper oxide thin films deposited high temperature has more hydrophobic surface than that of deposited at low temperature.

  • PDF

Dissolution Characteristics of Copper Oxide in Gas-liquid Hybrid Atmospheric Pressure Plasma Reactor Using Organic Acid Solution

  • Kwon, Heoung Su;Lee, Won Gyu
    • 공업화학
    • /
    • 제33권2호
    • /
    • pp.229-233
    • /
    • 2022
  • In this study, a gas-liquid hybrid atmospheric pressure plasma reactor of the dielectric barrier discharge method was fabricated and characterized. The solubility of copper oxide in the organic acid solution was increased when argon having a larger atomic weight than helium was used during plasma discharge. There was no significant effect of mixing organic acid solutions under plasma discharge treatment on the variation of copper oxide's solubility. As the applied voltage for plasma discharge and the concentration of the organic acid solution increased, the dissolution and removal power of the copper oxide layer increased. Solubility of copper oxide was more affected by the concentration in organic acid solution rather than the variation of plasma applied voltage. The usefulness of hybrid plasma reactor for the surface cleaning process was confirmed.

산화반응으로 형성된 구리산화물 박막의 표면형상 및 투과율 특성에 관한 연구 (Study on Surface Morphology and Transmittance of Copper Oxide Thin Films Prepared by an Oxidation Reaction)

  • 이은규;박대수;윤회진;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.651-655
    • /
    • 2017
  • This work reports the surface morphology and transmittance of copper oxide thin films for semitransparent solar cell applications. We prepared the oxide specimens by subjecting copper thin films to an oxidation reaction at annealing temperatures ranging between $100^{\circ}C$ and $300^{\circ}C$. The color of the as-deposited specimen was red, but changed to purple at the annealing temperature of $300^{\circ}C$. The surface morphology and transmittance of the specimens were significantly dependent on the annealing temperature and thickness of the copper films. Copper oxide nanoparticles prepared from a 20-nm-thick copper film at an annealing temperature of $300^{\circ}C$ provided a maximum transmittance of 93%. The obtained optical characteristics and surface morphology suggest that copper oxide thin films prepared by an oxidation reaction can be potentially employed as color- and transmittance-adjusting layer in semitransparent thin solar cells.