DOI QR코드

DOI QR Code

Study on Surface Morphology and Transmittance of Copper Oxide Thin Films Prepared by an Oxidation Reaction

산화반응으로 형성된 구리산화물 박막의 표면형상 및 투과율 특성에 관한 연구

  • Lee, Eun Kyu (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Park, Daesoo (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Yoon, Hoi Jin (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Lee, Seung-Yun (Department of Advanced Materials Engineering, Hanbat National University)
  • 이은규 (한밭대학교 신소재공학과) ;
  • 박대수 (한밭대학교 신소재공학과) ;
  • 윤회진 (한밭대학교 신소재공학과) ;
  • 이승윤 (한밭대학교 신소재공학과)
  • Received : 2017.08.16
  • Accepted : 2017.08.28
  • Published : 2017.10.01

Abstract

This work reports the surface morphology and transmittance of copper oxide thin films for semitransparent solar cell applications. We prepared the oxide specimens by subjecting copper thin films to an oxidation reaction at annealing temperatures ranging between $100^{\circ}C$ and $300^{\circ}C$. The color of the as-deposited specimen was red, but changed to purple at the annealing temperature of $300^{\circ}C$. The surface morphology and transmittance of the specimens were significantly dependent on the annealing temperature and thickness of the copper films. Copper oxide nanoparticles prepared from a 20-nm-thick copper film at an annealing temperature of $300^{\circ}C$ provided a maximum transmittance of 93%. The obtained optical characteristics and surface morphology suggest that copper oxide thin films prepared by an oxidation reaction can be potentially employed as color- and transmittance-adjusting layer in semitransparent thin solar cells.

Keywords

References

  1. A. Virtuani and D. Strepparava, Sol. Energy, 146, 113 (2017). [DOI: https://doi.org/10.1016/j.solener.2017.02.035]
  2. R. N. Puspitasari, H. A. Budiarti, A. M. Hatta, Sekartedjo, and D. D. Risanti, Procedia Eng., 170, 93 (2017). [DOI: https://doi.org/10.1016/j.proeng.2017.03.018]
  3. S. Y. Lee, K. S. Bang, and J. W. Lim, J. Electron. Mater., 43, 3204 (2014). [DOI: https://doi.org/10.1007/s11664-014-3286-z]
  4. R. K. Li, H. To, G. Andonian, J. Feng, A. Polyakov, C. M. Scoby, K. Thompson, W. Wan, H. A. Padmore, and P. Musumeci, Phys. Rev. Lett., 110, 074801 (2013). [DOI: https://doi.org/10.1103/PhysRevLett.110.074801]
  5. H. J. Yoon, K. S. Bang, J. W. Lim, and S. Y. Lee, J. Mater. Sci.: Mater. Electron., 27, 11358 (2016). [DOI: https://doi.org/10.1007/s10854-016-5260-4]
  6. S. H. Lee, S. J. Yun, M. Shin, and J. W. Lim, Sol. Energy Mater. Sol. Cells, 117, 519 (2013). [DOI: https://doi.org/10.1016/j.solmat.2013.07.029]
  7. S. K. Lee, H. C. Hsu, and W. H. Tuan, Mater. Res., 19, 51 (2016). [DOI: http://dx.doi.org/10.1590/1980-5373-MR-2015-0139]
  8. M. Lenglet, J. M. Machefert, J. M. Claude, B. Lefez, J. Lopitaux, and A. D'Huysser, Surf. Interface. Anal., 16, 289 (1990). [DOI: http://dx.doi.org/10.1002/sia.740160160]
  9. H. A. Macleod, Thin-Film Optical Filters, 3rd Edition (CRC Press, Bristol and Philadelphia, 2001) p. 6.
  10. S. Y. Lee, S. H. Choi, and C. O. Park, Thin Solid Films, 359, 261 (2000). [DOI: https://doi.org/10.1016/S0040-6090(99)00758-0]
  11. D. Amram, L. Klinger, N. Gazit, H. Gluska, and E. Rabkin, Acta Mater., 69, 386 (2014). [DOI: https://doi.org/10.1016/j.actamat.2014.02.008]
  12. S. Banerjee and D. Chakravorty, Europhys. Lett., 52, 468 (2000). [DOI: https://doi.org/10.1209/epl/i2000-00461-5]