• Title/Summary/Keyword: Copper Formate

Search Result 15, Processing Time 0.022 seconds

Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid (포름산 혼합 나노섬유 성장 구리마이크로입자를 이용한 구리 소결 페이스트 합성)

  • Young Un Jeon;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.96-99
    • /
    • 2024
  • A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 ㎛ grown at 400 ℃ on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 ℃, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.

Copper Electrode Material using Copper Formate-Bicarbonate Complex for Printed Electronics

  • Hwang, Jaeeun;Kim, Sinhee;Ayag, Kevin Ray;Kim, Hongdoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.147-150
    • /
    • 2014
  • Copper ink has been prepared by mixing copper(II) formate and 2-ethyl-1-hexylammonium bicarbonate (EHABC) to overcome some weak points such as aggregation and degradation of copper nano-type ink. Ink was coated on glass substrate and calcined at $110^{\circ}C$ to $150^{\circ}C$ to generate electrically conductive copper film under two different atmospheres such as nitrogen gas and gaseous mixture of formic acid and methanol. The lowest resistivity of $1.88{\mu}{\Omega}{\cdot}cm$ of copper film was obtained at $150^{\circ}C$ in gaseous formic acid condition. The long-term resistivity shows to increase from $1.88{\mu}{\Omega}{\cdot}cm$ to $2.61{\mu}{\Omega}{\cdot}cm$ after one month.

Formation of copper films from copper formate by laser-induced pyrolytic decomposition (Copper formate의 레이저 유도 열 분해에 의한 Cu 박막의 제조)

  • Kim, Jae-Kwon;Park, Se-Ki;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1444-1446
    • /
    • 1998
  • Direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films using a focused argon ion laser beam($\lambda$ =514.5nm) on a glass. The thickness and linewidth of the deposited copper films were considered as a function of laser power and scan speed. As the result from AES, there are no other elements except for copper after decomposition in the atmospheric ambient.

  • PDF

Development of a Liquid-Phase Methanol Synthesis Process for Coal-derived Syngas (석탄가스 전환용 액상 메탄올 합성 공정 개발)

  • Shin, Jang-Sik;Jung, Heon;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.251-257
    • /
    • 2002
  • Liquid-phase methanol synthesis via methyl formate using coal-derived syngas was carried out in a bench-scale(diameter 173 mm and dispersion height 1200 mm) slurry bubble column reactor(SBCR) Under the condition of $180^{\circ}$. 61 atm, 30 L/min, $H_{2}$/CO=2 and a slurry mixture of 2 kg of copper chromite and 0.5 kg of $KOCH_{3}$ suspended in 14 L of methanol, the per pass conversions of syngas is 6 %, maximum concentration of methyl formate 3.088 mol% and maximum synthesis, rate of methanol 0.8 gmole/kg ${\cdot}$ hr. It is a significant evidence that copper chromite powder as heterogeneous catalyst didn't active for the hydrogenolysis of methyl formate to methanol, resulting copper chromite powder was not efficiently suspended in a slurry mixture. To enhance the hydrogenolysis of methyl formate in liquid-phase methanol synthesis process, the designed SBCR have need to use the higher specific gravity solvent and/or decrease the catalyst particle size.

Laser dissect writing from copper(II) formate using Ar+ laser (아르곤 이온 레이저를 이용한 CU의 직접 쓰기 기술)

  • Lee, Hong-Kyu;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.663-666
    • /
    • 2000
  • Laser direct writing of micro-patterned copper lines has been achieved by pyrolytic decomposition of copper formate films (Cu(HCOO)$_2$$.$4H$_2$O), as a precursor, using a focused Ar$\^$+/ laser beam ($\lambda$= 514 nm) on PCB boards and glass substrates. The linewidth and thickness of the lines were investigated as a function of laser power and scan speed. The profiles of the lines were measured by scanning electron microscope (SEM), surface profiler (${\alpha}$-step) and atomic force microscopy (AFM). The electrical resistivities of the patterned lines were also investigated as a function of laser parameter using probe station and semiconductor analyzer. we compared resistivities of the patterned lines with that of the Cu bulk, respectively.

  • PDF

New Methods of Producing Copper Sulfate Crystals Using Small-Scale Chemistry(SSC) in Elementary School Science (초등과학에서 미량화학(SSC)을 이용한 황산구리 결정 만들기의 새로운 방법)

  • Han, Sang-Joon;Kim, Sung-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.981-992
    • /
    • 2008
  • This study examined how to produce new methods of copper (II) sulfate crystallization by using a small-scale chemistry tool such as small-scale reaction surface and petri dish. The making of copper(II) sulfate is included in the 5th grade elementary science textbooks. Various copper(II) compounds were reacted with a 2 M sulfuric acid solution. The result of this study is as follows: Seven small amounts of copper(II) compounds were reacted with a few drops of 2 M sulfuric acid solution at room temperature to make a copper(II) sulfate crystal of triclinic shape. Using the petri dish method, a copper(II) sulfate crystal could be identified within one hour of reacting copper(II) hydroxide, copper(II) carbonate, copper(II) nitrate, copper(II) perchlorate, cupric(II) formate from a few drops of 2 M sulfuric acid solution at room temperature. When using the lap top method for copper(II) perchlorate, cupric formate, a proper crystal could be identified within one hour as well. SSC methods were used for the first time to make a copper sulfate crystal via chemical reaction. We can make a copper(II) sulfate crystal using a simple method which is easier, safer and saves time in class. And since a small quantity of chemicals are being used in SSC chemical methods, waste is greatly reduced. This lessens the amount of environmental problems caused by the experiment. This can be helpful in preserving nature. In addition the cost of chemical and laboratory equipment is greatly reduced because it uses material that we find in our daily lives. There will be continued study of small-scale methods such as improvement of new programs, study and training of teachers, and securing SSC tools. I would like to suggest such as SSC methods are applicable in elementary School Science. I would like it to become a wide spread program.

A Fundamental Study on Polymer/Metal Additive Method using a UV Laser for Consumer-oriented 3D Helmet Products (소비자 지향 3차원 헬멧제품 제작을 위한 UV레이저 기반의 폴리머/금속적층에 대한 기초연구)

  • Kang, Bo-Seok;Ahn, Dong-Gyu;Shin, Bo-Sung;Shin, Jong-Kuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.89-94
    • /
    • 2016
  • Consumer orientation requires that companies understand consumer needs and produce products that meet their expectations. This study proposes a new additive method that creates a polymer/metal bonding layer and thus can lighten the weight of helmets to develop a consumer-oriented 3D printing helmet. The composite solution is experimentally prepared with copper formate and a photopolymer resin. Stereolithography apparatus and photothermal reactions are introduced to fabricate an adhesive hybrid layer of copper metal and polymer. A UV pulse laser with a 355 nm wavelength was installed to simplify this process. Resistance, adhesion, and accuracy were investigated to evaluate the properties of the layer produced.

Characteristics of Cu(II) Extraction by β-ketohexanal (β-ketohexanal에 의한 Cu(II)의 추출 특성)

  • Shin, Jeong-Ho;Lee, Sang-Hoon;Jeong, Kap-Seop;Park, Kyung-Kee;Jun, Sang-Woo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1053-1060
    • /
    • 1996
  • $\beta$-ketohexanal as a chelating extractant was synthesized from the reaction of ethyl formate and methyl propyl ketone in the presence of sodium amide, and the equilibrium characteristics in the extraction of copper by $\beta$-ketohexanal-chloroform were investigated. The equilibrium constants such as the dissociation constant and the partition coefficients of $\beta$-ketohexanal, the stability constant and the partition coefficient of copper chelating complex, and the overall equilibrium constant in the extraction of copper were determined by spectrophotometric measurements, and the mechanism of extraction was proposed. The percent of extracted copper by $\beta$-ketohexanal-chloroform was near 100%, and the selective extraction of copper from Cu-Zn-Cd mixture was possible. Copper was found to be extracted as $CuR_2$ and the equilibrium reaction was expressed as $Cu^{2+}+2{\overline{HR}}{\rightleftarrows}{\overline{CuR{_2}}}+2H^+$.

  • PDF

A Study on Patterning and Property of Cu Using Laser-Induced Deposition (레이저 유도 증착법을 이용한 CU의 패터닝 및 특성에 관한 연구)

  • Kim, Jae-Kwon;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.889-891
    • /
    • 1998
  • Copper films have been deposited on glass substrate via a thermal decomposition of copper(II) formate using a focused $Ar^+$ laser emitting at 514 nm. The growth kinetics of these Cu films was investigated as a function of laser power and scan speed which varied in the range of 70-150 mW and 0.1-20 mm/s, respectively. The resistivity of the copper films was a factor of about 20 higher than· that of bulk value, but the resistivity decreased due to changes in morphology and porosity of the deposit after annealing at $300^{\circ}C$, 5 min. and was about $10{\mu}{\Omega}cm$.

  • PDF

Laser-Induced Direct Copper Patterning Using Focused $Ar^+$ Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 레이저 유도 직접 구리 패터닝)

  • Lee, Hong-Kyu;Lee, Kyoung-Cheol;Ahn, Min-Young;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.969-975
    • /
    • 2000
  • Laser direct writing of micro-patterned copper lines has been achieved by pyrolytic decomposition of copper formate films (Cu(HCOO)$_2$.4$H_2O$), as a metallo-organic precursor, using a focused CW Ar$^{+}$ laser beam (λ=514nm) on PCB boards and glass substrates. The linewidth and thickness of the lines wee investigated as a functin of laser power and scan speed. The profiles of the lines were measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force microscopy (AFM). The electrical resistivities of the patterned lines were also investigated as a function of laser parameters using probe station and semiconductor analyzer. We compared resistivities of the patterned copper lines with these of the Cu bulk. Resistivities decreased due to changes in morphology and porosity of the deposit, which were about 3.8 $\mu$$\Omega$cm and 12$\mu$$\Omega$cm on PCB and glass substrates after annealing at 30$0^{\circ}C$ for 5 minutes.s.

  • PDF