• Title/Summary/Keyword: Copper Binding

Search Result 107, Processing Time 0.02 seconds

Copper Content Increase in E. coli Expressing Copper-Binding Peptide Genes (구리 결합 펩타이드의 발현에 의한 대장균 균체의 구리 함량 증가)

  • Kim, Hyung-Kee;Moon, Sung-Hyun;Kim, Woo-Yeon
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Cloning and expression of copper-binding peptide gene in E. coli was carried out to enhance the copper-chelation capacity. E. coli was transformed with pET vector containing the copper-binding region of potato polyphenol oxidase gene and polyhistidine-coding DNA, and the copper content of E. coli harboring each vector was measured. No increase in intracellular copper was observed in E. coli harboring PPOCBpET32 vector, which contains DNA for polyphenol oxidase copper-binding region. Intracellular copper content of E. coli harboring pE728a vector, which contains one hexahistidine unit DNA, was 2,500 ppm after culturing without kanamycin, whereas E. coli harboring pET-his vector, which contains nine hexahistidine unit DNAs was 3,200 ppm.

A Study on Bioaccumulation of Heavy Metals in Mussels (Mytilus edulis) from the Onsan Coastal Zone (온산 연안에 서식하는 진주담치(Mytilus edulis)의 중금속 생물농축에 관한 연구)

  • 백수민;이인숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.217-224
    • /
    • 1998
  • The heavy metal concentrations of seawater collected from the Onsan coastal zone in February and July 1996 and mussels(Mytilus edulis) in February 1997 were analysed. The concentrations of cadmium in seawater were in the range of 0.008-2.988 ${\mu}g/L$, while the ranges of copper and zinc concentrations were 0.08-2.55, and 0.21-35.12 ${\mu}g/L$, respectively. The metal concentrations decreased gradually with increasing distances from Daejeong stream, indicating that this stream was the major source of heavy metal input into the Onsan coastal zone. The concentrations of cadmium, copper and zinc in mussels were in the ranges of 1.40-25.09, 8.5-64.5, and 46.8-291.2 ${\mu}g/g$, respectively. The metal concentrations decreased gradually with increasing distances from Daejeong stream. Among organs of mussels, gill showed the highest concentrations of cadmium and the digestive gland showed the highest concentrations of copper and for zine the kidney showed the highest concentrations. The digestive gland and kidney revealed high proportion of cadmium in cytosolic fraction and the percentage of copper was high in the kidney and that of zine was high in the digestive gland. Metal-binding protein of mussels collected from the mouth of Daejeong stream was separated, using gel-filtration chromatography. In the kidney and gill of mussels, most of cadmium was associated with metal-binding protein. In contrast, most of the metal in the digestive gland and remaining tissues is bound to high molecular weight protein rather than metal-binding protein.

  • PDF

Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals

  • Hyun, Ja-shil;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.3
    • /
    • pp.76-81
    • /
    • 2016
  • Copper is an elemental ion in living organisms. CopP from Helicobacter Pylori (HpCopP) is a copper(I)-binding protein and was suggested as regulator of copper metabolism in vivo. Previously, the metal binding property of HpCopP for Ag(I), Cu(I), and Cu(II) as well as the tertiary structure of HpCopP was shown. In this study, the dynamic profiles of HpCopP depending on metal binding were studied using ${^1H}-^{15}N$ steady-state NOE analysis. The heteroNOE experiment was performed for apo-CopP or metal-bound CopP. The obtained NOE values were analyzed and compared to figure out the effect of metals on the structural flexibility of HpCopP. As a result, Ag(I) and Cu(I) ions improved the rigidity of the structure while Cu(II) ion increased the flexibility of the structure, suggesting the oxidation of the CXXC motif decreases the structural stability of HpCopP.

Copper binding capacity and physicochemical properties of pectins with different degrees of esterification. Approach to standardization of pectin preparations

  • Kovalev, Valeri V;Khotimchenko, Maxim Y;Khotimchenko, Yuri S
    • Advances in Traditional Medicine
    • /
    • v.7 no.2
    • /
    • pp.171-181
    • /
    • 2007
  • Metal binding activity of the pectin samples with different physicochemical properties was studied. It was found that in vitro copper binding capacity of pectins is depending on the following factors: degree of esterification, content of non-methylated anhydrogalacturonic acid, and pH of solution. There was found that the maximum copper uptake capacity increases correspondingly to reduction of the degree of esterification of pectin, rise of the non-methylated anhydrogalacturnic acid content and the solution pH. It is proposed to use for standardization of pectin samples such parameters as the degree of esterification, content of anhydrogalacturonic acid, and intrinsic viscosity.

Cloning of laccase Gene Fragment from Coprinus congregatus by PCR (Coprinus congregatus에서 PCR에 의한 laccase 유전자의 부분 cloning)

  • 김순자;임영은;최형태
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.25-27
    • /
    • 1999
  • Degenerate primers corresponding to the sequences of the copper-binding regions in the fungal laccases were used to isolatc laccase gene specific fragment by PCR in Coprinus congregahts. A 144 bp DNA hagrnent was cloned and was identified to have 60-69 % homology with other fungal laccase genes. The predicted amino acid sequcnces showed 68-75% homology with other fungal laccase proteins.

  • PDF

Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from Spirulina and Its Response to Copper Ions

  • Jiang, Su-Dan;sheng, Yi;Wu, Xian-Jun;Zhu, Yong-Li;Li, Ping-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.233-239
    • /
    • 2021
  • Cyanobacteriochromes (CBCRs) are phytochrome-related photoreceptor proteins in cyanobacteria and cover a wide spectral range from ultraviolet to far-red. A single GAF domain that they contain can bind bilin(s) autocatalytically via heterologous recombination and then fluoresce, with potential applications as biomarkers and biosensors. Here, we report that a novel red/green CBCR GAF domain, SPI1085g2 from Spirulina subsalsa, covalently binds both phycocyanobilin (PCB) and phycoerythrobilin (PEB). The PCB-binding GAF domain exhibited canonical red/green photoconversion with weak fluorescence emission. However, the PEB-binding GAF domain, SPI1085g2-PEB, exhibited an intense orange fluorescence (λabs.max = 520 nm, λfluor.max = 555 nm), with a fluorescence quantum yield close to 1.0. The fluorescence of SPI1085g2-PEB was selectively and instantaneously quenched by copper ions in a concentration-dependent manner and exhibited reversibility upon treatment with the metal chelator EDTA. This study identified a novel PEB-binding cyanobacteriochrome-based fluorescent protein with the highest quantum yield reported to date and suggests its potential as a biosensor for the rapid detection of copper ions.

Energy Calibration of ESCA Spectrum for the Copper in the Interface of Copper and Cordierite (구리와 코디에라이트와의 접촉점에서 구리에 대한 ESCA 스펙트럼의 에너지 교정)

  • Han, Byoung-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • Electron Spectroscopy for Chemical Analysis(ESCA) allowes the determination of the elemental composition and the bonding state of the surface atomes in the interface between two materials. In the binding energies of ESCA spectrum, there are zero error, voltage scaling error and random error. Accurate analysis of the intensity energy response functions and accurate calibration of the energy scale are essential to use X-ray photoelectron spectron meter. At the results of the calibration of the ESCA spectra in the copper and cordierite (Mg2Al4Si5kO18) interfaces, the errors relative to the copper are -3.03 eV for the zero error -z,-197 ppm for the voltage scaling error -V and 6.9 meV for the random error -R. The method of the calibration is able to apply for the binding energy calibration of the another ESCA spectra.

  • PDF

Thermodynamic Studies on the Interaction of Copper Ions with Carbonic Anhydrase

  • Sarraf, N.S.;Mamaghani-Rad, S.;Karbassi, F.;Saboury, A. A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1051-1056
    • /
    • 2005
  • The interaction of bovine carbonic anhydrase II with copper ions was studied by isothermal titration microcalorimetry, circular dichroism, UV spectrophotometry and temperature scanning spectrophotometry methods at 27 ${^{\circ}C}$ in Tris buffer solution at pH = 7.5. It was indicated that there are three non-identical different binding sites on carbonic anhydrase for $Cu^{2+}$. The binding of copper ions is exothermic and can induce some minor changes in the secondary and tertiary structure of the enzyme, which does not unfold it, but can result in a decrease in both activity and stability of the enzyme.

Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium

  • Yoon, Bo-Young;Yeom, Ji-Hyun;Kim, Jin-Sik;Um, Si-Hyeon;Jo, Inseong;Lee, Kangseok;Kim, Yong-Hak;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.100-108
    • /
    • 2014
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu,Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.