DOI QR코드

DOI QR Code

Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium

  • Yoon, Bo-Young (College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Yeom, Ji-Hyun (Department of Life Science, Chung-Ang University) ;
  • Kim, Jin-Sik (College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Um, Si-Hyeon (College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Jo, Inseong (College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Lee, Kangseok (Department of Life Science, Chung-Ang University) ;
  • Kim, Yong-Hak (Department of Microbiology, Catholic University of Daegu, School of Medicine) ;
  • Ha, Nam-Chul (College of Pharmacy and Research Institute for Drug Development, Pusan National University)
  • Received : 2013.08.27
  • Accepted : 2013.12.18
  • Published : 2014.02.28

Abstract

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu,Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.

Keywords

References

  1. Achard, M.E., Stafford, S.L., Bokil, N.J., Chartres, J., Bernhardt, P.V., Schembri, M.A., Sweet, M.J., and McEwan, A.G. (2012). Copper redistribution in murine macrophages in response to Salmonella infection. Biochem. J. 444, 51-57. https://doi.org/10.1042/BJ20112180
  2. Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
  3. Coburn, B., Grassl, G.A., and Finlay, B.B. (2007). Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 85, 112-118. https://doi.org/10.1038/sj.icb.7100007
  4. Crichton, R.R., and Pierre, J.L. (2001). Old iron, young copper: from Mars to Venus. Biometals 14, 99-112. https://doi.org/10.1023/A:1016710810701
  5. Czech, M.P., Lawrence, J.C., Jr., and Lynn, W.S. (1974). Evidence for electron transfer reactions involved in the $Ca^{2+}$-dependent thiol activation of fat cell glucose utilization. J. Biol. Chem. 249, 1001-1006.
  6. Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
  7. Dupont, C.L., Grass, G., and Rensing, C. (2011). Copper toxicity and the origin of bacterial resistance--new insights and applications. Metallomics 3, 1109-1118. https://doi.org/10.1039/c1mt00107h
  8. Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  9. Eng, J.K., McCormack, A.L., and Yates, J.R. (1995). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom 5, 976-989.
  10. Espariz, M., Checa, S.K., Audero, M.E., Pontel, L.B., and Soncini, F.C. (2007). Dissecting the Salmonella response to copper. Microbiology 153, 2989-2997. https://doi.org/10.1099/mic.0.2007/006536-0
  11. Fields, P.I., Swanson, R.V., Haidaris, C.G., and Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83, 5189-5193. https://doi.org/10.1073/pnas.83.14.5189
  12. Franke, S., Grass, G., Rensing, C., and Nies, D.H. (2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 185, 3804-3812. https://doi.org/10.1128/JB.185.13.3804-3812.2003
  13. Grass, G., and Rensing, C. (2001). CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286, 902-908. https://doi.org/10.1006/bbrc.2001.5474
  14. Halliwell, B., and Gutteridge, J.M. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1-14. https://doi.org/10.1042/bj2190001
  15. Hodgkinson, V., and Petris, M.J. (2012). Copper homeostasis at the host-pathogen interface. J. Biol. Chem. 287, 13549-13555. https://doi.org/10.1074/jbc.R111.316406
  16. Landt, O., Grunert, H.P., and Hahn, U. (1990). A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96, 125-128. https://doi.org/10.1016/0378-1119(90)90351-Q
  17. Leary, S.C., and Winge, D.R. (2007). The Janus face of copper: its expanding roles in biology and the pathophysiology of disease. Meeting on Copper and Related Metals in Biology. EMBO Rep. 8, 224-227.
  18. Netto, L.E.S., Chae, H.Z., Kang, S.W., Rhee, S.G., and Stadtman, E.R. (1996). Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J. Biol. Chem. 271, 15315-15321. https://doi.org/10.1074/jbc.271.26.15315
  19. O'Halloran, T.V., and Culotta, V.C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057-25060. https://doi.org/10.1074/jbc.R000006200
  20. Osman, D., and Cavet, J.S. (2008). Copper homeostasis in bacteria. Adv. Appl. Microbiol. 65, 217-247. https://doi.org/10.1016/S0065-2164(08)00608-4
  21. Osman, D., Waldron, K.J., Denton, H., Taylor, C.M., Grant, A.J., Mastroeni, P., Robinson, N.J., and Cavet, J.S. (2010). Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J. Biol. Chem. 285, 25259-25268. https://doi.org/10.1074/jbc.M110.145953
  22. Osman, D., Patterson, C.J., Bailey, K., Fisher, K., Robinson, N.J., Rigby, S.E., and Cavet, J.S. (2013). The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol. Microbiol. 87, 466-477. https://doi.org/10.1111/mmi.12107
  23. Pontel, L.B., and Soncini, F.C. (2009). Alternative periplasmic copper- resistance mechanisms in Gram negative bacteria. Mol. Microbiol. 73, 212-225. https://doi.org/10.1111/j.1365-2958.2009.06763.x
  24. Prohaska, J.R., and Lukasewycz, O.A. (1981). Copper deficiency suppresses the immune response of mice. Science 213, 559-561. https://doi.org/10.1126/science.7244654
  25. Rensing, C., Fan, B., Sharma, R., Mitra, B., and Rosen, B.P. (2000). CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97, 652-656. https://doi.org/10.1073/pnas.97.2.652
  26. Rigo, A., Corazza, A., di Paolo, M.L., Rossetto, M., Ugolini, R., and Scarpa, M. (2004). Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 98, 1495-1501. https://doi.org/10.1016/j.jinorgbio.2004.06.008
  27. Schaible, U.E., and Kaufmann, S.H. (2004). Iron and microbial infection. Nat. Rev. Microbiol. 2, 946-953. https://doi.org/10.1038/nrmicro1046
  28. White, C., Kambe, T., Fulcher, Y.G., Sachdev, S.W., Bush, A.I., Fritsche, K., Lee, J., Quinn, T.P., and Petris, M.J. (2009a). Copper transport into the secretory pathway is regulated by oxygen in macrophages. J. Cell Sci. 122, 1315-1321. https://doi.org/10.1242/jcs.043216
  29. White, C., Lee, J., Kambe, T., Fritsche, K., and Petris, M.J. (2009b). A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949-33956. https://doi.org/10.1074/jbc.M109.070201
  30. Wolschendorf, F., Ackart, D., Shrestha, T.B., Hascall-Dove, L., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S.H., Basaraba, R.J., and Niederweis, M. (2011). Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 108, 1621-1626. https://doi.org/10.1073/pnas.1009261108
  31. Yamamoto, N., Nakahigashi, K., Nakamichi, T., Yoshino, M., Takai, Y., Touda, Y., Furubayashi, A., Kinjyo, S., Dose, H., Hasegawa, M., et al. (2009). Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol. Syst. Biol. 5, 335.
  32. Yoon, B.Y., Kim, Y.H., Kim, N., Yun, B.Y., Kim, J.S., Lee, J.H., Cho, H.S., Lee, K., and Ha, N.C. (2013). Structure of the periplasmic copper-binding protein CueP from Salmonella enterica serovar Typhimurium. Acta Crystallogr. D Biol. Crystallogr. 69, 1867-1875. https://doi.org/10.1107/S090744491301531X
  33. Yun, B.Y., Piao, S., Kim, Y.G., Moon, H.R., Choi, E.J., Kim, Y.O., Nam, B.H., Lee, S.J., and Ha, N.C. (2011). Crystallization and preliminary X-ray crystallographic analysis of Salmonella Typhimurium CueP. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 675-677. https://doi.org/10.1107/S1744309111010645

Cited by

  1. Compartment and signal-specific codependence in the transcriptional control ofSalmonellaperiplasmic copper homeostasis vol.113, pp.41, 2016, https://doi.org/10.1073/pnas.1603192113
  2. A dimerization interface mediated by functionally critical residues creates interfacial disulfide bonds and copper sites in CueP vol.140, 2014, https://doi.org/10.1016/j.jinorgbio.2014.07.022
  3. Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria vol.38, pp.8, 2015, https://doi.org/10.14348/molcells.2015.0099
  4. The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria vol.478, pp.2, 2016, https://doi.org/10.1016/j.bbrc.2016.07.116
  5. Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium vol.446, pp.4, 2014, https://doi.org/10.1016/j.bbrc.2014.03.043
  6. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium vol.83, pp.11, 2015, https://doi.org/10.1128/IAI.00653-15
  7. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection vol.199, pp.24, 2014, https://doi.org/10.1128/jb.00437-17
  8. Resistance to Metals Used in Agricultural Production vol.6, pp.2, 2014, https://doi.org/10.1128/microbiolspec.arba-0025-2017
  9. The Scs disulfide reductase system cooperates with the metallochaperone CueP in Salmonella copper resistance vol.294, pp.44, 2014, https://doi.org/10.1074/jbc.ra119.010164
  10. A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species vol.10, pp.1, 2014, https://doi.org/10.1038/s41467-019-12826-x
  11. Phloretin is protective in a murine salmonella enterica serovar typhimurium infection model vol.161, pp.no.pb, 2014, https://doi.org/10.1016/j.micpath.2021.105298