References
- Achard, M.E., Stafford, S.L., Bokil, N.J., Chartres, J., Bernhardt, P.V., Schembri, M.A., Sweet, M.J., and McEwan, A.G. (2012). Copper redistribution in murine macrophages in response to Salmonella infection. Biochem. J. 444, 51-57. https://doi.org/10.1042/BJ20112180
- Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
- Coburn, B., Grassl, G.A., and Finlay, B.B. (2007). Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 85, 112-118. https://doi.org/10.1038/sj.icb.7100007
- Crichton, R.R., and Pierre, J.L. (2001). Old iron, young copper: from Mars to Venus. Biometals 14, 99-112. https://doi.org/10.1023/A:1016710810701
-
Czech, M.P., Lawrence, J.C., Jr., and Lynn, W.S. (1974). Evidence for electron transfer reactions involved in the
$Ca^{2+}$ -dependent thiol activation of fat cell glucose utilization. J. Biol. Chem. 249, 1001-1006. - Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
- Dupont, C.L., Grass, G., and Rensing, C. (2011). Copper toxicity and the origin of bacterial resistance--new insights and applications. Metallomics 3, 1109-1118. https://doi.org/10.1039/c1mt00107h
- Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
- Eng, J.K., McCormack, A.L., and Yates, J.R. (1995). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom 5, 976-989.
- Espariz, M., Checa, S.K., Audero, M.E., Pontel, L.B., and Soncini, F.C. (2007). Dissecting the Salmonella response to copper. Microbiology 153, 2989-2997. https://doi.org/10.1099/mic.0.2007/006536-0
- Fields, P.I., Swanson, R.V., Haidaris, C.G., and Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83, 5189-5193. https://doi.org/10.1073/pnas.83.14.5189
- Franke, S., Grass, G., Rensing, C., and Nies, D.H. (2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 185, 3804-3812. https://doi.org/10.1128/JB.185.13.3804-3812.2003
- Grass, G., and Rensing, C. (2001). CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286, 902-908. https://doi.org/10.1006/bbrc.2001.5474
- Halliwell, B., and Gutteridge, J.M. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1-14. https://doi.org/10.1042/bj2190001
- Hodgkinson, V., and Petris, M.J. (2012). Copper homeostasis at the host-pathogen interface. J. Biol. Chem. 287, 13549-13555. https://doi.org/10.1074/jbc.R111.316406
- Landt, O., Grunert, H.P., and Hahn, U. (1990). A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96, 125-128. https://doi.org/10.1016/0378-1119(90)90351-Q
- Leary, S.C., and Winge, D.R. (2007). The Janus face of copper: its expanding roles in biology and the pathophysiology of disease. Meeting on Copper and Related Metals in Biology. EMBO Rep. 8, 224-227.
- Netto, L.E.S., Chae, H.Z., Kang, S.W., Rhee, S.G., and Stadtman, E.R. (1996). Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J. Biol. Chem. 271, 15315-15321. https://doi.org/10.1074/jbc.271.26.15315
- O'Halloran, T.V., and Culotta, V.C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057-25060. https://doi.org/10.1074/jbc.R000006200
- Osman, D., and Cavet, J.S. (2008). Copper homeostasis in bacteria. Adv. Appl. Microbiol. 65, 217-247. https://doi.org/10.1016/S0065-2164(08)00608-4
- Osman, D., Waldron, K.J., Denton, H., Taylor, C.M., Grant, A.J., Mastroeni, P., Robinson, N.J., and Cavet, J.S. (2010). Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J. Biol. Chem. 285, 25259-25268. https://doi.org/10.1074/jbc.M110.145953
- Osman, D., Patterson, C.J., Bailey, K., Fisher, K., Robinson, N.J., Rigby, S.E., and Cavet, J.S. (2013). The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol. Microbiol. 87, 466-477. https://doi.org/10.1111/mmi.12107
- Pontel, L.B., and Soncini, F.C. (2009). Alternative periplasmic copper- resistance mechanisms in Gram negative bacteria. Mol. Microbiol. 73, 212-225. https://doi.org/10.1111/j.1365-2958.2009.06763.x
- Prohaska, J.R., and Lukasewycz, O.A. (1981). Copper deficiency suppresses the immune response of mice. Science 213, 559-561. https://doi.org/10.1126/science.7244654
- Rensing, C., Fan, B., Sharma, R., Mitra, B., and Rosen, B.P. (2000). CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97, 652-656. https://doi.org/10.1073/pnas.97.2.652
- Rigo, A., Corazza, A., di Paolo, M.L., Rossetto, M., Ugolini, R., and Scarpa, M. (2004). Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 98, 1495-1501. https://doi.org/10.1016/j.jinorgbio.2004.06.008
- Schaible, U.E., and Kaufmann, S.H. (2004). Iron and microbial infection. Nat. Rev. Microbiol. 2, 946-953. https://doi.org/10.1038/nrmicro1046
- White, C., Kambe, T., Fulcher, Y.G., Sachdev, S.W., Bush, A.I., Fritsche, K., Lee, J., Quinn, T.P., and Petris, M.J. (2009a). Copper transport into the secretory pathway is regulated by oxygen in macrophages. J. Cell Sci. 122, 1315-1321. https://doi.org/10.1242/jcs.043216
- White, C., Lee, J., Kambe, T., Fritsche, K., and Petris, M.J. (2009b). A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949-33956. https://doi.org/10.1074/jbc.M109.070201
- Wolschendorf, F., Ackart, D., Shrestha, T.B., Hascall-Dove, L., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S.H., Basaraba, R.J., and Niederweis, M. (2011). Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 108, 1621-1626. https://doi.org/10.1073/pnas.1009261108
- Yamamoto, N., Nakahigashi, K., Nakamichi, T., Yoshino, M., Takai, Y., Touda, Y., Furubayashi, A., Kinjyo, S., Dose, H., Hasegawa, M., et al. (2009). Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol. Syst. Biol. 5, 335.
- Yoon, B.Y., Kim, Y.H., Kim, N., Yun, B.Y., Kim, J.S., Lee, J.H., Cho, H.S., Lee, K., and Ha, N.C. (2013). Structure of the periplasmic copper-binding protein CueP from Salmonella enterica serovar Typhimurium. Acta Crystallogr. D Biol. Crystallogr. 69, 1867-1875. https://doi.org/10.1107/S090744491301531X
- Yun, B.Y., Piao, S., Kim, Y.G., Moon, H.R., Choi, E.J., Kim, Y.O., Nam, B.H., Lee, S.J., and Ha, N.C. (2011). Crystallization and preliminary X-ray crystallographic analysis of Salmonella Typhimurium CueP. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 675-677. https://doi.org/10.1107/S1744309111010645
Cited by
- Compartment and signal-specific codependence in the transcriptional control ofSalmonellaperiplasmic copper homeostasis vol.113, pp.41, 2016, https://doi.org/10.1073/pnas.1603192113
- A dimerization interface mediated by functionally critical residues creates interfacial disulfide bonds and copper sites in CueP vol.140, 2014, https://doi.org/10.1016/j.jinorgbio.2014.07.022
- Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria vol.38, pp.8, 2015, https://doi.org/10.14348/molcells.2015.0099
- The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria vol.478, pp.2, 2016, https://doi.org/10.1016/j.bbrc.2016.07.116
- Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium vol.446, pp.4, 2014, https://doi.org/10.1016/j.bbrc.2014.03.043
- MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium vol.83, pp.11, 2015, https://doi.org/10.1128/IAI.00653-15
- Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection vol.199, pp.24, 2014, https://doi.org/10.1128/jb.00437-17
- Resistance to Metals Used in Agricultural Production vol.6, pp.2, 2014, https://doi.org/10.1128/microbiolspec.arba-0025-2017
- The Scs disulfide reductase system cooperates with the metallochaperone CueP in Salmonella copper resistance vol.294, pp.44, 2014, https://doi.org/10.1074/jbc.ra119.010164
- A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species vol.10, pp.1, 2014, https://doi.org/10.1038/s41467-019-12826-x
- Phloretin is protective in a murine salmonella enterica serovar typhimurium infection model vol.161, pp.no.pb, 2014, https://doi.org/10.1016/j.micpath.2021.105298