DOI QR코드

DOI QR Code

Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from Spirulina and Its Response to Copper Ions

  • Jiang, Su-Dan (College of Biology and the Environment, Nanjing Forestry University) ;
  • sheng, Yi (College of Biology and the Environment, Nanjing Forestry University) ;
  • Wu, Xian-Jun (College of Biology and the Environment, Nanjing Forestry University) ;
  • Zhu, Yong-Li (College of Biology and the Environment, Nanjing Forestry University) ;
  • Li, Ping-Ping (College of Biology and the Environment, Nanjing Forestry University)
  • Received : 2020.09.25
  • Accepted : 2020.11.10
  • Published : 2021.02.28

Abstract

Cyanobacteriochromes (CBCRs) are phytochrome-related photoreceptor proteins in cyanobacteria and cover a wide spectral range from ultraviolet to far-red. A single GAF domain that they contain can bind bilin(s) autocatalytically via heterologous recombination and then fluoresce, with potential applications as biomarkers and biosensors. Here, we report that a novel red/green CBCR GAF domain, SPI1085g2 from Spirulina subsalsa, covalently binds both phycocyanobilin (PCB) and phycoerythrobilin (PEB). The PCB-binding GAF domain exhibited canonical red/green photoconversion with weak fluorescence emission. However, the PEB-binding GAF domain, SPI1085g2-PEB, exhibited an intense orange fluorescence (λabs.max = 520 nm, λfluor.max = 555 nm), with a fluorescence quantum yield close to 1.0. The fluorescence of SPI1085g2-PEB was selectively and instantaneously quenched by copper ions in a concentration-dependent manner and exhibited reversibility upon treatment with the metal chelator EDTA. This study identified a novel PEB-binding cyanobacteriochrome-based fluorescent protein with the highest quantum yield reported to date and suggests its potential as a biosensor for the rapid detection of copper ions.

Keywords

References

  1. Ikeuchi M, Ishizuka T. 2008. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem. Photobiol. Sci. 7: 1159-1167. https://doi.org/10.1039/b802660m
  2. Rockwell NC, Martin SS, Feoktistova K, Lagarias JC. 2011. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proc. Natl. Acad. Sci. USA 108: 11854-11859. https://doi.org/10.1073/pnas.1107844108
  3. Rockwell NC, Martin SS, Gulevich AG, Lagarias JC. 2012. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry 51: 1449-1463. https://doi.org/10.1021/bi201783j
  4. Enomoto G, Hirose Y, Narikawa R, Ikeuchi M. 2012. Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999. Biochemistry 51: 3050-3058. https://doi.org/10.1021/bi300020u
  5. Rockwell NC, Martin SS, Lagarias JC. 2012. Red/green cyanobacteriochromes: sensors of color and power. Biochemistry 51: 9667-9677. https://doi.org/10.1021/bi3013565
  6. Rockwell NC, Martin SS, Lagarias JC. 2016. Identification of cyanobacteriochromes detecting far-red light. Biochemistry 55: 3907-3919. https://doi.org/10.1021/acs.biochem.6b00299
  7. Narikawa R, Fushimi K, Ni-Ni-Win, Ikeuchi M. 2015. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Biochem. Biophys. Res. Commun. 461: 390-395. https://doi.org/10.1016/j.bbrc.2015.04.045
  8. Hirose Y, Rockwell NC, Nishiyama K, Narikawa R, Ukaji Y, Inomata K, et al. 2013. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proc. Natl. Acad. Sci. USA 110: 4974-4979. https://doi.org/10.1073/pnas.1302909110
  9. Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M. 2008. A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion. J. Mol. Biol. 380: 844-855. https://doi.org/10.1016/j.jmb.2008.05.035
  10. Zhang J, Wu XJ, Wang ZB, Chen Y, Wang X, Zhou M, et al. 2010. Fused-gene approach to photoswitchable and fluorescent biliproteins. Angew. Chem. Int. Ed. Engl. 49: 5456-5458. https://doi.org/10.1002/anie.201001094
  11. Kim PW, Freer LH, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. 2012. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward dynamics. Biochemistry 51: 608-618. https://doi.org/10.1021/bi201507k
  12. Fushimi K, Enomoto G, Ikeuchi M, Narikawa R. 2017. Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis. Photochem. Photobiol. 93: 681-691. https://doi.org/10.1111/php.12732
  13. Fushimi K, Nakajima T, Aono Y, Yamamoto T, Ni-Ni-Win, Ikeuchi M, et al. 2016. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin. Front. Microbiol. 7: 588. https://doi.org/10.3389/fmicb.2016.00588
  14. Sun YF, Xu JG, Tang K, Miao D, Gartner W, Scheer H, et al. 2014. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin. Photochem. Photobiol. Sci. 13: 757-763. https://doi.org/10.1039/c3pp50411e
  15. Richmond TA, Takahashi TT, Shimkhada R, Bernsdorf J. 2000. Engineered metal binding sites on green fluorescence protein. Biochem. Biophys. Res. Commun. 268: 462-465. https://doi.org/10.1006/bbrc.1999.1244
  16. Yu X, Strub MP, Barnard TJ, Noinaj N, Piszczek G, Buchanan SK, et al. 2014. An engineered palette of metal ion quenchable fluorescent proteins. PLoS One 9: e95808. https://doi.org/10.1371/journal.pone.0095808
  17. Bae JE, Kim IJ, Nam KH. 2018. Spectroscopic analysis of the Cu2+-induced fluorescence quenching of fluorescent proteins AmCyan and mOrange2. Mol. Biotechnol. 60: 485-491. https://doi.org/10.1007/s12033-018-0088-1
  18. Ayyadurai N, Saravanan Prabhu N, Deepankumar K, Lee SG, Jeong HH, Lee CS, et al. 2011. Development of a selective, sensitive, and reversible biosensor by the genetic incorporation of a metal-binding site into green fluorescent protein. Angew. Chem. Int. Ed. Engl. 50: 6534-6537. https://doi.org/10.1002/anie.201008289
  19. Sumner JP, Westerberg NM, Stoddard AK, Hurst TK, Cramer M, Thompson RB, et al. 2006. DsRed as a highly sensitive, selective, and reversible fluorescence-based biosensor for both Cu+ and Cu2+ ions. Biosens. Bioelectron. 21: 1302-1308. https://doi.org/10.1016/j.bios.2005.04.023
  20. Zou W, Le K, Zastrow ML. 2020. live-cell copper-induced fluorescence quenching of the flavin-binding fluorescent protein CreiLOV. Chembiochem. 21: 1356-1363. https://doi.org/10.1002/cbic.201900669
  21. Wu XJ, Yang H, Sheng Y, Zhu YL, Li PP. 2018. Fluorescence properties of a novel cyanobacteriochrome GAF domain from Spirulina that exhibits moderate dark reversion. Int. J. Mol. Sci. 19: 2253. https://doi.org/10.3390/ijms19082253
  22. Blot N, Wu XJ, Thomas JC, Zhang J, Garczarek L, Bohm S, et al. 2009. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J. Biol. Chem. 284: 9290-9298. https://doi.org/10.1074/jbc.M809784200
  23. Wu XJ, Chang K, Luo J, Zhou M, Scheer H, Zhao KH. 2013. Modular generation of fluorescent phycobiliproteins. Photochem. Photobiol. Sci. 12: 1036-1040. https://doi.org/10.1039/c3pp25383j
  24. Chen Y, Zhang J, Luo J, Tu JM, Zeng XL, Xie J, et al. 2012. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. FEBS J. 279: 40-54. https://doi.org/10.1111/j.1742-4658.2011.08397.x
  25. Mukougawa K, Kanamoto H, Kobayashi T, Yokota A, Kohchi T. 2006. Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli. FEBS Lett. 580: 1333-1338. https://doi.org/10.1016/j.febslet.2006.01.051
  26. Eli P, Chakrabartty A. 2006. Variants of DsRed fluorescent protein: development of a copper sensor. Protein Sci. 15: 2442-2447. https://doi.org/10.1110/ps.062239206
  27. Fitzgerald DJ. 1998. Safety guidelines for copper in water. Am. J. Clin. Nutr. 67: 1098S-1102S. https://doi.org/10.1093/ajcn/67.5.1098S
  28. Isarankura-Na-Ayudhya C, Tantimongcolwat T, Galla HJ, Prachayasittikul V. 2010. Fluorescent protein-based optical biosensor for copper ion quantitation. Biol. Trace Elem. Res. 134: 352-363. https://doi.org/10.1007/s12011-009-8476-9
  29. Masullo T, Puccio R, Di Pierro M, Tagliavia M, Censi P, Vetri V, et al. 2014. Development of a biosensor for copper detection in aqueous solutions using an Anemonia sulcata recombinant GFP. Appl. Biochem. Biotechnol. 172: 2175-2187. https://doi.org/10.1007/s12010-013-0669-1
  30. Ravikumar Y, Nadarajan SP, Lee CS, Rhee JK, Yun HD. 2015. A new-generation fluorescent-based metal sensor - iLOV protein. J. Microbiol. Biotechnol. 25: 503-510. https://doi.org/10.4014/jmb.1409.09035
  31. Suresh M, Mishra SK, Mishra S, Das A. 2009. The detection of Hg2+ by cyanobacteria in aqueous media. Chem. Commun. 14: 2496-2498.
  32. Frausto da Silva JJF, Williams RJP. 1991. The Biological Chemistry of Elements. Clarendon Press, Oxford.
  33. Puangploy P, Oaew S, Surareungchai W. 2015. Development of fluorescent phycocyanin-Cu2+ chemosensor for detection of homocysteine. Int. J. Biosci. Biochem. Bioinform. 5: 241-248.
  34. Weishaupt R, Siqueira G, Schubert M, Kampf MM, Zimmermann T, Maniura-Weber K, et al. 2017. A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Adv. Funct. Mater. 27: 1604291. https://doi.org/10.1002/adfm.201604291
  35. Rahimi Y, Shrestha S, Banerjee T, Deo SK. 2007. Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa. Anal. Biochem. 370: 60-67. https://doi.org/10.1016/j.ab.2007.05.018
  36. Kim IJ, Kim S, Park J, Eom I, Kim S, Kim JH, et al. 2016. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development. FEBS Lett. 590: 2982-2990. https://doi.org/10.1002/1873-3468.12316
  37. Kim IJ, Xu Y, Nam KH. 2020. Spectroscopic and structural analysis of Cu2+-induced fluorescence quenching of ZsYellow. Biosensors (Basel) 10: 29. https://doi.org/10.3390/bios10030029