References
- Ikeuchi M, Ishizuka T. 2008. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem. Photobiol. Sci. 7: 1159-1167. https://doi.org/10.1039/b802660m
- Rockwell NC, Martin SS, Feoktistova K, Lagarias JC. 2011. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proc. Natl. Acad. Sci. USA 108: 11854-11859. https://doi.org/10.1073/pnas.1107844108
- Rockwell NC, Martin SS, Gulevich AG, Lagarias JC. 2012. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry 51: 1449-1463. https://doi.org/10.1021/bi201783j
- Enomoto G, Hirose Y, Narikawa R, Ikeuchi M. 2012. Thiol-based photocycle of the blue and teal light-sensing cyanobacteriochrome Tlr1999. Biochemistry 51: 3050-3058. https://doi.org/10.1021/bi300020u
- Rockwell NC, Martin SS, Lagarias JC. 2012. Red/green cyanobacteriochromes: sensors of color and power. Biochemistry 51: 9667-9677. https://doi.org/10.1021/bi3013565
- Rockwell NC, Martin SS, Lagarias JC. 2016. Identification of cyanobacteriochromes detecting far-red light. Biochemistry 55: 3907-3919. https://doi.org/10.1021/acs.biochem.6b00299
- Narikawa R, Fushimi K, Ni-Ni-Win, Ikeuchi M. 2015. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Biochem. Biophys. Res. Commun. 461: 390-395. https://doi.org/10.1016/j.bbrc.2015.04.045
- Hirose Y, Rockwell NC, Nishiyama K, Narikawa R, Ukaji Y, Inomata K, et al. 2013. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proc. Natl. Acad. Sci. USA 110: 4974-4979. https://doi.org/10.1073/pnas.1302909110
- Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M. 2008. A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion. J. Mol. Biol. 380: 844-855. https://doi.org/10.1016/j.jmb.2008.05.035
- Zhang J, Wu XJ, Wang ZB, Chen Y, Wang X, Zhou M, et al. 2010. Fused-gene approach to photoswitchable and fluorescent biliproteins. Angew. Chem. Int. Ed. Engl. 49: 5456-5458. https://doi.org/10.1002/anie.201001094
- Kim PW, Freer LH, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. 2012. Femtosecond photodynamics of the red/green cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. 1. Forward dynamics. Biochemistry 51: 608-618. https://doi.org/10.1021/bi201507k
- Fushimi K, Enomoto G, Ikeuchi M, Narikawa R. 2017. Distinctive properties of dark reversion kinetics between two red/green-type cyanobacteriochromes and their application in the photoregulation of cAMP synthesis. Photochem. Photobiol. 93: 681-691. https://doi.org/10.1111/php.12732
- Fushimi K, Nakajima T, Aono Y, Yamamoto T, Ni-Ni-Win, Ikeuchi M, et al. 2016. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin. Front. Microbiol. 7: 588. https://doi.org/10.3389/fmicb.2016.00588
- Sun YF, Xu JG, Tang K, Miao D, Gartner W, Scheer H, et al. 2014. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin. Photochem. Photobiol. Sci. 13: 757-763. https://doi.org/10.1039/c3pp50411e
- Richmond TA, Takahashi TT, Shimkhada R, Bernsdorf J. 2000. Engineered metal binding sites on green fluorescence protein. Biochem. Biophys. Res. Commun. 268: 462-465. https://doi.org/10.1006/bbrc.1999.1244
- Yu X, Strub MP, Barnard TJ, Noinaj N, Piszczek G, Buchanan SK, et al. 2014. An engineered palette of metal ion quenchable fluorescent proteins. PLoS One 9: e95808. https://doi.org/10.1371/journal.pone.0095808
- Bae JE, Kim IJ, Nam KH. 2018. Spectroscopic analysis of the Cu2+-induced fluorescence quenching of fluorescent proteins AmCyan and mOrange2. Mol. Biotechnol. 60: 485-491. https://doi.org/10.1007/s12033-018-0088-1
- Ayyadurai N, Saravanan Prabhu N, Deepankumar K, Lee SG, Jeong HH, Lee CS, et al. 2011. Development of a selective, sensitive, and reversible biosensor by the genetic incorporation of a metal-binding site into green fluorescent protein. Angew. Chem. Int. Ed. Engl. 50: 6534-6537. https://doi.org/10.1002/anie.201008289
- Sumner JP, Westerberg NM, Stoddard AK, Hurst TK, Cramer M, Thompson RB, et al. 2006. DsRed as a highly sensitive, selective, and reversible fluorescence-based biosensor for both Cu+ and Cu2+ ions. Biosens. Bioelectron. 21: 1302-1308. https://doi.org/10.1016/j.bios.2005.04.023
- Zou W, Le K, Zastrow ML. 2020. live-cell copper-induced fluorescence quenching of the flavin-binding fluorescent protein CreiLOV. Chembiochem. 21: 1356-1363. https://doi.org/10.1002/cbic.201900669
- Wu XJ, Yang H, Sheng Y, Zhu YL, Li PP. 2018. Fluorescence properties of a novel cyanobacteriochrome GAF domain from Spirulina that exhibits moderate dark reversion. Int. J. Mol. Sci. 19: 2253. https://doi.org/10.3390/ijms19082253
- Blot N, Wu XJ, Thomas JC, Zhang J, Garczarek L, Bohm S, et al. 2009. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase. J. Biol. Chem. 284: 9290-9298. https://doi.org/10.1074/jbc.M809784200
- Wu XJ, Chang K, Luo J, Zhou M, Scheer H, Zhao KH. 2013. Modular generation of fluorescent phycobiliproteins. Photochem. Photobiol. Sci. 12: 1036-1040. https://doi.org/10.1039/c3pp25383j
- Chen Y, Zhang J, Luo J, Tu JM, Zeng XL, Xie J, et al. 2012. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. FEBS J. 279: 40-54. https://doi.org/10.1111/j.1742-4658.2011.08397.x
- Mukougawa K, Kanamoto H, Kobayashi T, Yokota A, Kohchi T. 2006. Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli. FEBS Lett. 580: 1333-1338. https://doi.org/10.1016/j.febslet.2006.01.051
- Eli P, Chakrabartty A. 2006. Variants of DsRed fluorescent protein: development of a copper sensor. Protein Sci. 15: 2442-2447. https://doi.org/10.1110/ps.062239206
- Fitzgerald DJ. 1998. Safety guidelines for copper in water. Am. J. Clin. Nutr. 67: 1098S-1102S. https://doi.org/10.1093/ajcn/67.5.1098S
- Isarankura-Na-Ayudhya C, Tantimongcolwat T, Galla HJ, Prachayasittikul V. 2010. Fluorescent protein-based optical biosensor for copper ion quantitation. Biol. Trace Elem. Res. 134: 352-363. https://doi.org/10.1007/s12011-009-8476-9
- Masullo T, Puccio R, Di Pierro M, Tagliavia M, Censi P, Vetri V, et al. 2014. Development of a biosensor for copper detection in aqueous solutions using an Anemonia sulcata recombinant GFP. Appl. Biochem. Biotechnol. 172: 2175-2187. https://doi.org/10.1007/s12010-013-0669-1
- Ravikumar Y, Nadarajan SP, Lee CS, Rhee JK, Yun HD. 2015. A new-generation fluorescent-based metal sensor - iLOV protein. J. Microbiol. Biotechnol. 25: 503-510. https://doi.org/10.4014/jmb.1409.09035
- Suresh M, Mishra SK, Mishra S, Das A. 2009. The detection of Hg2+ by cyanobacteria in aqueous media. Chem. Commun. 14: 2496-2498.
- Frausto da Silva JJF, Williams RJP. 1991. The Biological Chemistry of Elements. Clarendon Press, Oxford.
- Puangploy P, Oaew S, Surareungchai W. 2015. Development of fluorescent phycocyanin-Cu2+ chemosensor for detection of homocysteine. Int. J. Biosci. Biochem. Bioinform. 5: 241-248.
- Weishaupt R, Siqueira G, Schubert M, Kampf MM, Zimmermann T, Maniura-Weber K, et al. 2017. A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Adv. Funct. Mater. 27: 1604291. https://doi.org/10.1002/adfm.201604291
- Rahimi Y, Shrestha S, Banerjee T, Deo SK. 2007. Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa. Anal. Biochem. 370: 60-67. https://doi.org/10.1016/j.ab.2007.05.018
- Kim IJ, Kim S, Park J, Eom I, Kim S, Kim JH, et al. 2016. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development. FEBS Lett. 590: 2982-2990. https://doi.org/10.1002/1873-3468.12316
- Kim IJ, Xu Y, Nam KH. 2020. Spectroscopic and structural analysis of Cu2+-induced fluorescence quenching of ZsYellow. Biosensors (Basel) 10: 29. https://doi.org/10.3390/bios10030029