• Title/Summary/Keyword: Copper/low k

Search Result 594, Processing Time 0.028 seconds

Defect Diagnosis of Cable Insulating Materials by Partial Discharge Statistical Analysis

  • Shin, Jong-Yeol;Park, Hee-Doo;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • Polymer insulating materials such as cross linked polyethylene (XLPE) are employed in electric cables used for extra high voltage. These materials can degrade due to chemical, mechanical and electric stress, possibly caused by voids, the presence of extrinsic materials and protrusions. Therefore, this study measured discharge patterns, discharge phase angle, quantity and occurrence frequency as well as changes in XLPE under different temperatures and applied voltages. To quantitatively analyze the irregular partial discharge patterns measured, the discharge patterns were examined using a statistical program. A three layer sample was fabricated, wherein the upper and lower layers were composed of non-void XLPE, while the middle layer was composed of an air void and copper particles. After heating to room temperature and $50^{\circ}C$ and $80^{\circ}C$ in silicone oil, partial discharge characteristics were studied by increasing the voltage from the inception voltage to the breakdown voltage. Partial discharge statistical analysis showed that when the K-means clustering was carried out at 9 kV to determine the void discharge characteristics, the amount discharged at low temperatures was small but when the temperature was increased to $80^{\circ}C$, the discharge amount increased to be 5.7 times more than that at room temperature because electric charge injection became easier. An analysis of the kurtosis and the skewness confirmed that positive and negative polarity had counterclockwise and clockwise clustering distribution, respectively. When 5 kV was applied to copper particles, the K-means was conducted as the temperature changed from $50^{\circ}C$ to $80^{\circ}C$. The amount of charge at a positive polarity increased 20.3% and the amount of charge at a negative polarity increased 54.9%. The clustering distribution of a positive polarity and negative polarity showed a straight line in the kurtosis and skewness analyses.

Antioxidant Activity of Green Tea Extracts toward Human Low Density Lipoprotein (사람의 Low Density Lipoprotein에 대한 녹차의 항산화 활성)

  • Park, Chun-Ok;Jin, Seung-Heun;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.850-858
    • /
    • 1996
  • Green tea leaves 12.5 g were extracted twice with 500 ml boiling water. The green tea extract (GTE) contained 4.67 mg solid. The GTE contained polyphenols sush as 54.12% (-) epicatechin gallate, 26.21% (-) epicatechin, 10.71% epicatechin gallate, 7.09% (-) epicatechin and 1.85% catechin. The GTE inhibited the copper-catalyzed oxidation of human LDL at the concentrations of 50 and $100\;{\mu}g/ml$ GTE in the presence of $5\;{\mu}M$ $CuSO_{4}$. The electrophoretic mobility of the LDL oxidized in the presence of $5\;{\mu}M\;CuSO_{4}$ was higher than that of the native LDL. The GTE also inhibited LDL oxidation induced by J774, human monocyte-derived macrophages and vascular endotherial cells. The LDL modified by copper or cells was inhibited by human macrophages at a much greater rate than native LDL in the presence of GTE. The GTE was found to be a potent inhibitor of modification of LDL. GTE inhibited the uptake of cell-modified $^(125)I-labelled$ LDL by macrophages. The formation of conjugated dienes was strongly inhibited in the presence of 50 or $100\;{\mu}g/ml$ GTE.

  • PDF

Corrosivity of Atmospheres in the Korean Peninsula

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 2011
  • The Korean Peninsula is located in the middle latitude of the northern hemisphere and has a clear 4-seasons and shows the typical temperate climate. Because of seasonal winds, it is cold and dry by a northwestern wind in the winter and it is hot and humid by a southeast wind in the summer. Also, temperature difference between the winter and the summer is large and it shows a rainy season from June to July but recently this regular trend may be greatly changed by an unusual weather phenomena. Since the Peninsula is east high west low type, the climate is complicated too. Because these geographical and climate characteristics can affect the properties of corrosion of metals and alloys, a systematic research on atmospheric corrosion in the Peninsula is required to understand and control the corrosion behavior of the industrial facilities. This paper analyzed the atmospheric corrosion factors for several environments in the Korean Peninsula and categorized the corrosivity of atmospheric corrosion of metals and alloys on the base of the related ISO standards. Annual pH values of rain showed the range of 4.5~5.5 in Korean Peninsula from 1999 to 2009 and coastal area showed relatively the low pH's rain. Annual $SO_2$ concentrations is reduced with time and its concentrations of every major cities were below the air quality standard, but $NO_2$concentration revealed a steady state and its concentration of Seoul has been over air quality standard. In 2007, $SO_2$classes of each sites were in $P_0{\sim}P_1$, and chloride classes were in $S_0{\sim}S_1$, and TOW classes were in ${\tau}_3{\sim}{\tau}_4$.That is, $SO_2$ and chloride classes were low but TOW class was high in Korean Peninsula. On the base of these environmental classes, corrosivity of carbon steel, zinc, copper, aluminium can be calculated that carbon steel was in C2-C3 classes and it was classified as low-medium, and zinc, copper, and aluminium showed C3 class and it was classified as medium.

Stability and normal zone propagation in YBCO tapes with Cu stabilizer depending on cooling conditions at 77 K

  • Kruglov, S.L.;Polyakov, A.V.;Shutova, D.I.;Topeshkin, D.A.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2020
  • Here we present the comparative experimental study of the stability of the superconducting state in 4 mm YBCO tapes with copper lamination against local heat disturbances at 77 K. The samples are either directly cooled by immersing a bare YBCO tape into a liquid nitrogen pool or operate in nearly-adiabatic conditions when the tape is covered by a 0.6 mm layer of Kapton insulation. Main quench characteristics, i.e. minimum quench energies (MQEs) and normal zone propagation (NZP) velocities for both samples are measured and compared. Minimum NZP currents are determined by a low ohmic resistor technique eligible for obtaining V - I curves with a negative differential resistance. The region of transport currents satisfying the stationary stability criterion is found for the different cooling conditions. Finally, we use the critical temperature margin as a universal scaling parameter to compare the MQEs obtained in this work for YBCO tapes at 77 K with those taken from literature for low-temperature superconductors in vacuum at 4.2 K, as well as for MgB2 wires cooled with a cryocooler down to 20 K.

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering (무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가)

  • Lee, Jaesung;Kang, Ji Yeon;Kim, Seulgi;Jung, Chanhoe;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

Microwave Dielectric Properties of Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ Ceramics with Addition of Zn-B-O Glass Systems (Zn-B-O 글라스 첨가에 의한 Ca[(Li1/3Nb2/3)0.2Ti0.8]O3-δ 세라믹스의 마이크로파 유전특성)

  • In, Chi-Seung;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.781-785
    • /
    • 2016
  • With trend of the miniaturization and the high-functionalizing of mobile communication system, low-loss microwave dielectric materials are widely used for high frequency communication components. These dielectric materials should be co-sintered with highly electric-conducting metal such as silver or copper for high-frequency and thick film process application. Sintering temperature of $Ca(Li_{1/3}Nd_{2/3})_{0.2}Ti_{0.8}]O_{3-{\delta}}$, which has excellent dielectric properties such as ${\varepsilon}_r$ above 40, quality factor ($Q{\cdot}f_0$) above 16,000 GHz, and TCF (temperature coefficient of resonant frequency) of $-20{\sim}-10ppm/^{\circ}C$, is reported as high as $1,175^{\circ}C$, so it could not be co-sintered with silver or copper. Therefore in this study, low-temperature melting glasses of Zn-B-O and Zn-B-Si-O systems were added to $Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-{\delta}}$ to lower its sintering temperature under $900^{\circ}C$ without losing excellency of dielectric properties. With 15 weight % of Zn-B-Si-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.11g/cm^3$, ${\varepsilon}_r$ of 40.1, $Q{\cdot}f_0$ of 4,869 GHz, and TCF of $-5.9ppm/^{\circ}C$. With 15 weight % of Zn-B-O glass and sintered at $875^{\circ}C$, specimen showed density of $4.14g/cm^3$, ${\varepsilon}_r$ of 40.4, $Q{\cdot}f_0$ of 7,059 GHz, and TCF of $-0.92ppm/^{\circ}C$.

Assembling and Insulation Test of 1MVA Single Phase HTS Transformer for Power Distribution

  • Kim, S. H.;Kim, W. S.;Kim, J. T.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Lee, S. J.;S. Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.30-33
    • /
    • 2003
  • 1MVA high temperature superconducting (HTS) transformer with double pancake windings made of BSCCO-2223 HTS tapes was designed and manufactured. And prototype transformer with the same capacity was manufactured also. The each rated voltage of the HTS transformer is 22.9 kV and 6.6 kV. Four parallel BSCCO-2223 HTS tapes were wound in the double pancake windings of low voltage side. In order to distribute the currents equally in each HTS tapes, the three times transposition was performed between the double pancake windings. The windings of prototype transformer were wound using copper tape with the same size as BSCCO-2223 HTS tape. The core of the transformer was designed and manufactured as a shell type core made of laminated silicon steel plate. The several characteristics tests for the prototype transformer were performed in liquid nitrogen and insulation tests were accomplished also.

Optimization of Powder Core Inductors of Buck-Boost Converters for Hybrid Electric Vehicles

  • You, Bong-Gi;Kim, Jong-Soo;Lee, Byoung-Kuk;Choi, Gwang-Bo;Yoo, Dong-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.527-534
    • /
    • 2011
  • In the present paper, the characteristics of Mega-Flux$^{(R)}$, JNEX-Core$^{(R)}$, amorphous and ferrite cores are compared to the inductor of buck-boost converters for Hybrid Electric Vehicles. Core losses are analyzed at the condition of 10 kHz sine wave excitations, and permeability fluctuations vs. temperature and magnetizing force will be analyzed and discussed. Under the specifications of the buck-boost converter for 20 kW THS-II, the power inductor will be designed with Mega-Flux$^{(R)}$ and JNEX-Core$^{(R)}$, and informative simulation results will be provided with respect to dc bias characteristics, core and copper losses.

A Coumarin-based Fluorescent Sensor for Selective Detection of Copper (II)

  • Wang, Jian-Hong;Guo, Xin-Ling;Hou, Xu-Feng;Zhao, Hui-Jun;Luo, Zhao-Yang;Zhao, Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2400-2402
    • /
    • 2014
  • Cu (II) detection is of great importance owing to its significant function in various biological processes. In this report, we developed a novel coumarin-based chemosensor bearing the salicylaldimine unit (2) for $Cu^{2+}$ selective detection. The results from fluorescence spectra demonstrated that the sensor could selectively recognize $Cu^{2+}$ over other metal cations and the detection limit is as low as $0.2{\mu}M$. Moreover, the confocal fluorescence imaging in HepG2 cells illustrated its potential for biological applications.

A Study on the electrochemical mechanism of $NaNO_3$ electrolyte ($NaNO_3$ 전해액의 전기화학적 메커니즘 연구)

  • Lee, Young-Kyun;Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.116-116
    • /
    • 2008
  • Cu CMP 공정시 높은 압력으로 인하여 low-k 유전체막에 손실을 주며, 디싱과 에로젼 같은 문제점을 해결하기 위하여 기존의 CMP에 전기화학을 결합시킴으로서 낮은 하력에서의 Cu 평탄화를 달성 할 수 있는 ECMP(Electrochemical Mechanical Polishing)기술이 필요하게 되었다. 본 논문에서는 $NaNO_3$ 전해액이 Cu 표면에 미치는 영향을 SEM (Scanning electron microscopy), EDS (Energy Dispersive Spectroscopy), XRD(X-ray Diffraction)를 통하여 전기화학적 특성을 비교 분석하였다.

  • PDF