• Title/Summary/Keyword: Copper(II) oxide

Search Result 35, Processing Time 0.031 seconds

Non-sintering Preparation of Copper (II) Oxide Powder for Electroplating via 2-step Chemical Reaction

  • Lee, Seung Bum;Jung, Rae Yoon;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.146-154
    • /
    • 2017
  • In this study, copper (II) oxide was prepared for use in a copper electroplating solution. Copper chloride powder and copper (II) oxide are widely used as raw materials for electroplating. Copper (II) oxide was synthesized in this study using a two-step chemical reaction. Herein, we developed a method for the preparation of copper (II) oxide without the use of sintering. In the first step, copper carbonate was prepared without sintering, and then copper (II) oxide was synthesized without sintering using sodium hydroxide. The optimum amount of sodium hydroxide used for this process was 120 g and the optimum reaction temperature was $120^{\circ}C$ regardless of the starting material.

Manufacturing of Copper(II) Oxide Powder for Electroplating from NaClO3 Type Etching Wastes

  • Hong, In Kwon;Lee, Seung Bum;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • In this study, copper (II) oxide powder for electroplating was prepared by recovering CuCl2 from NaClO3 type etching wastes via recovered non-sintering two step chemical reaction. In case of alkali copper carbonate [mCuCo3·nCu(OH)2], first reaction product, CuCo3 is produced more than Cu(OH)2 when the reaction molar ratio of sodium carbonate is low, since m is larger than n. As the reaction molar ratio of sodium carbonate increased, m is larger than n and Cu(OH)2 was produced more than CuCO3. In the case of m has same values as n, the optimum reaction mole ratio was 1.44 at the reaction temperature of 80℃ based on the theoretical copper content of 57.5 wt. %. The optimum amount of sodium hydroxide was 120 g at 80℃ for production of copper (II) oxide prepared by using basic copper carbonate product of first reaction. At this time, the yield of copper (II) oxide was 96.6 wt.%. Also, the chloride ion concentration was 9.7 mg/L. The properties of produced copper (II) oxide such as mean particle size, dissolution time for sulfuric acid, and repose angle were 19.5 mm, 64 second, and 34.8°, respectively. As a result of the hole filling test, it was found that the copper oxide (II) prepared with 120 g of sodium hydroxide, the optimum amount of basic hydroxide for copper carbonate, has a hole filling of 11.0 mm, which satisfies the general hole filling management range of 15 mm or less.

Reaction Characteristics Study of Aluminum-Copper(II) Oxide Composites Initiated by the Electrostatic Discharge (Aluminum-Copper(II) Oxide Composite의 정전기에 의한 반응 특성 연구)

  • Kim, Minjun;Kim, Sung Ho;Kim, Jayoung;Im, Yeseul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2018
  • The reaction characteristics of aluminum-copper(II) oxide composites initiated by the electrostatic discharge were studied as changing the aluminum particle size. Three different sizes of aluminum particles with nano-size copper(II)-oxide particle were used in the study. These composites were manufactured by two methods i.e. a shock-gel method and a self-assembly method. The larger aluminum particle size was, the less sensitive and less violent these composites were based on the electrostatic test. On the analysis of high speed camera about ignition appearances and burning time, the burning speed was faster when aluminum particle size was smaller.

Synthesis of CuO nanoparticles by liquid phase precursor process (액상프리커서법에 의한 산화구리(CuO) 나노 입자의 합성)

  • Seong-Whan Shinn
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.855-859
    • /
    • 2023
  • Copper oxide (CuO) nanoparticles were successfully synthesized using a precursor in which industrial starch was impregnated with an aqueous solution of copper (II) nitrate trihydrate. The microstructure of the precursor impregnated with an aqueous solution of copper nitrate trihydrate was confirmed with a scanning electron microscope (SEM), and the particle size and the crystal structure of the copper oxide particles produced as the temperature of the heat treatment of the precursor increased was analyzed by X-ray diffraction (XRD) and the scanning electron microscope (SEM). As a result of the analysis, it was confirmed that the temperature at which the organic matter of the precursor is completely thermally decomposed is 450-490℃, and that the size and crystallinity of the copper oxide particles increased as the heat treatment temperature increased. The size of the copper oxide particles obtained through heat treatment at 500-800℃ during 1 hour was 100nm~2㎛. It was confirmed that the copper oxide crystalline phase is formed at a heat treatment temperature of 400℃, and only the copper oxide single phase existed up to 800℃. And it was also confirmed that the size of particles produced increased as the calcination temperature increased.

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Photocurrent Multiplication Process in OLEDs Due to a Crystalline of Hole Injection Layer of Copper(II)-phthalocyanine and a Light Irradiation (유기발광소자내 정공주입층 Copper(II)-phthalocyanine의 결정 및 광원에 따른 Photocurrent 증폭 연구)

  • 임은주;박미화;윤순일;이기진;차덕준;김진태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.622-626
    • /
    • 2003
  • We report the electrical properties of organic light emitting diodes (OLEDs) depending on the crystal structure of hole injection layer of copper(II)-phthalocyanine(CuPc) and the light irradiation the carrier mobility of copper(II)-phthalocyanine(CuPc) of light source. OLEDs were constructed with indium tin oxide(ITO)/CuPc/triphenyl-diamin(TPD)/tris-(8-hydroxyquinoline)aluminum(Alq$_3$)/Al.Photocurrent multiplication of OLEDs was varied by the heat-treatment condition of CuPc thin film and the light irradiation.

Nanocrystalline Copper Oxide(II)-Catalyzed Alkyne-Azide Cycloadditions

  • Song, Young-Jin;Yoo, Chung-Yul;Hong, Jong-Tai;Kim, Seung-Joo;Son, Seung-Uk;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1561-1564
    • /
    • 2008
  • Although the use of Cu(II) salts as catalysts without reductants is limited in the cycloaddition of acetylenes with azides, the catalytic system employing average 10 nm CuO(II) nanoparticles in the absence of reductants shows good catalytic activity to form 1,4-disubstituted 1,2,3-triazoles even in wet THF as well as water. It is also noticeable that CuO(II) nanoparticle catalysts can be recycled with consistent activity. A range of alkynes and azides were subject to the optimized CuO(II) nanoparticle-catalyzed cycloaddition reaction conditions to afford the desired products in good yields.

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.

Sol-Gel 법으로 제작된 정공 수송층과 결합한 유기 태양전지 특성 연구

  • Lee, Se-Han;Choe, Jeol-Jun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.453-453
    • /
    • 2013
  • 유기 태양전지는 저비용으로 제작이 가능하고 제작이 용이한 장점을 가지고 있으므로 많은 그룹에서 관심을 가지고 있다. 정공 수송층으로 사용되는 PEDOT:PSS는 많이 사용되지만 강한 산성 특성 때문에 ITO 전극에 식각이 되므로 문제가 있다. 그러므로 산화물 반도체 $WO_3$, $MoO_3$, 그리고 $V_2O_3$ 등이 태양전지에 많이 만들어지고 있다. 특히 copper oxide는 높은 광흡수율을 가지고 있으므로 태양전지에 사용하는 데 많은 기대되는 물질이다. Copper oxide 박막은 열증착 법, 스프레이 필로시스, 전기화학 증착, 화학증착법, 그리고 솔-젤법 등 다양한 증착 방법이 있다. 넓은 면적의 소자를 제작할 경우 솔-젤 방법은 기존의 증착법에 비해 낮은 비용으로 제작, 높은 성장율, 그리고 높은 기계적 탄력성의 장점이 있다. 솔-젤법으로 만든 copper oxide는 P3HT의 HOMO (high occupied molecular orbital)와 비슷한 위치에 접하고 있으므로 정공수송층으로 적합하다. 본 연구에서 제작된 태양전지의 구조는 ITO/P3HT:PCBM/CuxO로 구성되어 있다. ITO가 $10{\Omega}$/sq의비저항을 가지고 있었고 UV 처리를 하였다. 그 위에 P3HT:PCBM (1:0.8 weight)를 스핀 코팅하였다. 마지막으로 0.1 M $Cu_xO$용액은 Cu (II) acetate monohydrate를 소스로 2-methoxyethanol ($C_3H_8O_2$)의 용제와 안정제로 monoethanolamine ($C_2H_7NO$)을 섞어서 만들었다. 그리고 P3HT:PCBM 위에 스핀 코팅하였고 열증착 방법으로 전극인 Ag 을 증착하여 최종 소자를 만들었다. Cu(II) acetate의 소스로 제작된 박막의 투과율 측정을 통해 에너지 밴드갭을 구할 수 있었다. Copper oxide 박막은 다결정구조 이므로 다중 밴드갭으로 구성되어지는 것을 알 수 있었다. 최종적으로 만들어진 소자를 열처리를 통해 소자 특성을 조사했더니 250도에서 가장 좋은 결과를 얻을 수 있었다.

  • PDF

Layered Nickel-Based Oxides on Partially Oxidized Metallic Copper Foils for Lithium Ion Batteries

  • Chung, Young-Hoon;Park, Sun-Ha;Kim, Hyun-Sik;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.204-210
    • /
    • 2011
  • Thin film electrodes have been intensively studied for active materials and current collectors to enhance the electrochemical performance. Here, porous structures of nickel-based oxide films, consisting of nickel oxide and copper (II) oxide, which was derived from the copper substrate during the annealing process, were deposited on metallic copper foils. The half-cell tests revealed excellent capacity retention after $80^{th}$ charge/discharge cycles. Some films showed an excess of the theoretical capacity of nickel oxides, which mainly originate from partially oxidized copper substrates during annealing. These results exhibit that both a preparation method of an active materials and partially oxidized current collectors could be important roles to apply thin film electrodes.