DOI QR코드

DOI QR Code

Layered Nickel-Based Oxides on Partially Oxidized Metallic Copper Foils for Lithium Ion Batteries

  • Chung, Young-Hoon (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Park, Sun-Ha (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Kim, Hyun-Sik (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU)) ;
  • Sung, Yung-Eun (World Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University (SNU))
  • Received : 2011.12.03
  • Accepted : 2011.12.27
  • Published : 2011.12.31

Abstract

Thin film electrodes have been intensively studied for active materials and current collectors to enhance the electrochemical performance. Here, porous structures of nickel-based oxide films, consisting of nickel oxide and copper (II) oxide, which was derived from the copper substrate during the annealing process, were deposited on metallic copper foils. The half-cell tests revealed excellent capacity retention after $80^{th}$ charge/discharge cycles. Some films showed an excess of the theoretical capacity of nickel oxides, which mainly originate from partially oxidized copper substrates during annealing. These results exhibit that both a preparation method of an active materials and partially oxidized current collectors could be important roles to apply thin film electrodes.

Keywords

References

  1. P.L. Taberna, S. Mitra, P. Poizot, P. Simon and J.-M. Tarascon, Nat. Mater., 5, 567 (2006). https://doi.org/10.1038/nmat1672
  2. Y. Yu, C.-H. Chen, J.-L. Shui and S. Xie, Angew. Chem. Int. Ed., 44, 7085 (2005). https://doi.org/10.1002/anie.200501905
  3. J. Hassonun, S. Panero, P. Simon, P.L. Taberna and B. Scrosati, Adv. Mater., 19, 1632 (2007). https://doi.org/10.1002/adma.200602035
  4. H.-J. Ahn, Y.-S. Kim, H.-S. Shim, C.-Y. Kim and T.-Y. Seong, Solid State Ionics, 176, 699 (2005). https://doi.org/10.1016/j.ssi.2004.11.002
  5. Y. Yu, C.-H. Chen and Y.A. Shi, Adv. Mater., 19, 993 (2007). https://doi.org/10.1002/adma.200601667
  6. H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma and T. Osaka, Electrochem. Solid-State Lett., 6(10), A218 (2003). https://doi.org/10.1149/1.1602331
  7. H.-J. Ahn, K.-W. Park and Y.-E. Sung, Chem. Mater., 16, 1991 (2004). https://doi.org/10.1021/cm030665a
  8. J.J. Lee, S.H. Kim, S.H. Jee, Y.S. Yoon, W.I. Cho, S.J. Yoon, J.W. Choi and S.-C. Nam, J. Power Sources, 178, 434 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.116
  9. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon, Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  10. E. Hosono, S. Fujihara, I. Honma and H. Zhou, Electrochem. Comm., 8, 284 (2006). https://doi.org/10.1016/j.elecom.2005.11.023
  11. Y. Wang and Q.-Z. Qin, J. Electrochem. Soc., 149, A873 (2002). https://doi.org/10.1149/1.1481715
  12. Y.-N. Nuli, S.-L. Zhao and Q.-Z. Qin, J. Power Sources, 114, 113 (2003). https://doi.org/10.1016/S0378-7753(02)00531-1
  13. S.H. Park, J.W. Lim, S.J. Yoo, I.Y. Cha and Y.-E. Sung, Sol. Energy Mater. Sol. Cells, 99, 31 (2012). https://doi.org/10.1016/j.solmat.2011.06.023
  14. W. Xing, F. Li, Z.-F. Yan and G.Q. Lu, J. Power Sources, 134, 324 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.038
  15. J. Li, R. Yan, B. Xiao, D.T. Liang and D.H. Lee, Energy & Fuel, 22, 16 (2008). https://doi.org/10.1021/ef700283j
  16. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G. E. Muilenberg, Handbook Of X-RAY Photoelectron Spectroscopy Perkin-Elmer Corp., Minnesota, U.S. (1978).
  17. X.Y. Fan, Z.G. Wu, P.X. Yan, B.S. Geng, H.J. Li, C. Li and P.J. Zhang, Mater. Lett., 62, 1805 (2008). https://doi.org/10.1016/j.matlet.2007.10.006
  18. J.F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy, John Wiley & Sons Ltd., Sussex, U.K. (2003).
  19. Z.S. Hong, Y. Cao and J.F. Deng, Mater. Lett., 52, 34 (2002). https://doi.org/10.1016/S0167-577X(01)00361-5
  20. X.H. Huang, J.P. Tu, C.Q. Zhang and J.Y. Xiang, Electrochem. Comm., 9, 1180 (2007). https://doi.org/10.1016/j.elecom.2007.01.014
  21. S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot and J.-M. Trascon, J. Electrochem. Soc., 148, A285 (2001). https://doi.org/10.1149/1.1353566
  22. X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan and H. M. Wu, Electrochim. Acta, 52, 4177 (2007). https://doi.org/10.1016/j.electacta.2006.11.034
  23. S.Q. Wang, J.Y. Zhang and C.H. Chen, Scripta Mater., 57, 337 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.034