• Title/Summary/Keyword: Copolymers

Search Result 866, Processing Time 0.026 seconds

Polystyrene-b-poly(oligo(ethylene oxide) Monomethyl Ether Methacrylate)-b-polystyrene Triblock Copolymers as Potential Carriers for Hydrophobic Drugs

  • You, Qianqian;Chang, Haibo;Guo, Qipeng;Zhang, Yudong;Zhang, Puyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.558-564
    • /
    • 2013
  • A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b-polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance ($^1H$ NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore, the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b-POEOMA-b-PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers (메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.344-351
    • /
    • 2004
  • Poly(ethylene glycol)-based diblock and triblock polyester copolymers stimulating to temperature were studied as injectable biomaterials in drug delivery system because of their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) (M$_{n}$=750 g/mole) and poly($\varepsilon$-caprolactone) (PCL) by ring opening polymerization of $\varepsilon$-CL with MPEG as an initiator in the presence of HCl . Et$_2$O. The aqueous solution of synthesized diblock copolymers represented sol phase at room temperature and a sol to gel phase transition as the temperature increased from room temperature to body temperature. To confirm the in vivo gel formation, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After 2 months, we observed the maintenance of gel without dispersion in mice. In this study, we synthesized diblock copolymers exhibiting sol-gel phase transition and confirmed the feasibility as biomaterials of injectable implantation.n.

Synthesis of Methoxy Poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers and Release Behavior of Albumin for Implantable Protein Carriers (이식형 단백질 전달체로서 메톡시 폴리(에틸렌 글리콜)/폴리카프로락톤 블록 공중합체의 합성 및 알부민의 방출 거동)

  • 서광수;전세강;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.232-238
    • /
    • 2004
  • MPEG-PCL diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and $\varepsilon$-caprolactone (CL) as drug carriers were synthesized by ring-opening polymerization MPEG-PCL diblock copolymers were characterized by X-ray diffraction and differential scanning calorimetry. After freeze milling of block copolymers and albumin bovine-fluorescein isothiocyanate (FITC-BSA) as model protein, the wafers loaded FITC-BSA were fabricated by direct compression method. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 14 days at 37$^{\circ}C$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer. The morphological change of wafers was observed by digital camera and scanning electron microscope. The release rate and initial burst of BSA increased with increasing PEG molecular weights and decreasing PCL molecular weights in the segments of MPEG -PCL diblock copolymers.

Synthesis of Novel Carbazole-based Blue Light-emitting Copolymers Containing (Diphenylene)vinylene Pendants (디페닐렌비닐렌 치환기를 가진 카바졸계 청색발광 공중합체 합성)

  • Kim, Woo Yeon;Yoon, Keun-Byoung
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.736-743
    • /
    • 2013
  • Novel carbazole based copolymers were synthesized by Suzuki coupling polymerization. (Diphenylene)vinylene and n-octyl was introduced to carbazole as pendants for reducing band gap and improving solubility, respectively. Thermal, photoluminescence and electro-luminescence of copolymers were studied for applying the emitting layer of polymer light emitting diode (PLED). Maximum UV-vis absorption and photoluminescence (PL) emission wavelength of copolymers showed 333~340 nm and 409~464 nm in solution state, respectively. The relative quantum yield using 9,10-diphenylanthracene as a reference was 25.8%. These copolymers exhibited high thermal stability ($T_d$ = $350^{\circ}C$) and good film forming ability. Good luminance was obtained at voltages lower than 8 V and the onset voltage was observed at 4.0 V.

Synthesis and Characteristic of Polythiophene Containing Electron Withdrawing Group (Electron Withdrawing Group을 함유한 Polythiophene의 합성과 특성에 관한 연구)

  • Hong, Hyeok-Jin;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.539-545
    • /
    • 2012
  • 3-(2-benzotriazolovinyl)thiophene (BVT) was synthesized by the connection of the thiophene with the electron-withdrawing group, benzotriazole, through the vinylene. Its structure was confirmed by FT-IR, $^1H$-NMR, $^{13}C$-NMR and 2D hetero-cosy spectroscopy. Both BVT and 3-octylthiophene (OT) were copolymerized and showed an average molecular weight of 12000 (PDI 2.67) and 15000 (PDI 2.55), respectively. The copolymers were dissolved in the organic solvent such as chloroform, THF, TCE, etc. The mole ratios of BVT and OT in the synthesized copolymers were confirmed as 1 : 1.8 and 1 : 2.8 from $^1H$-NMR spectra. The UV-vis maximum absorption of copolymers appeared at the wavelength of 470 nm and 465 nm and the photoluminescence at ${\lambda}_{max}$ = 662 nm and 641 nm correspond to red-orange light. The band gaps of copolymers at 1.96 eV and 2.02 eV were found to be higher than those of poly(3-octylthiophene). The HOMO energy levels of the copolymers decreased overall in comparison with those of poly(3-octylthiophene), but the overall LUMO energy level increased.

Self-Assembly of Triblock Copolymers in Melts and Solutions

  • Kim, Seung-Hyun;Jo, Won-Ho
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.185-196
    • /
    • 2001
  • The self-assembly of block copolymers can lead to a variety of ordered structures on a nanometer scale. In this article, the self-assembling behaviors of triblock copolymers in the melt and the selective solvent are described with the results obtained from the computer simulations. With the advances of computing power, computer simulations using molecular dynamics and Monte Carlo techniques make it possible to study very complicated phenomena observed in the self-assembly of triblock copolymer. 13king full advantage of the computer simulation based on well-defined model, the effects of various structural and thermodynamic parameters such as the copolymer composition, the block sequence, the pairwise interaction energies, and temperature on the self-assembly are discussed in some detail. Some simulation results are compared with experimental ones End analyzed by comparing them with the theoretical treatment.

  • PDF

Preparation and Characterization of PEG/PLA Multiblock and Triblock Copolymer

  • Zhao, Hesong;Liu, Zhun;Park, Sang-Hyuk;Kim, Sang-Ho;Kim, Jung-Hyun;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1638-1642
    • /
    • 2012
  • A series of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) tri and multiblock copolymers with relatively high molecular weights were synthesized through the coupling reaction between the bis(acyl chloride) of carboxylated PLA and mono or dihydroxy PEG. The coupling reaction and the copolymer structures were monitored by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The melting temperature (Tm) of PEG blocks decreased with the presence of PLA sequences attaching to PEG blocks. The CMC values were determined to be 10-145 mg/L depending on the length of PLA and PEG blocks and the structure of the block copolymers.

Microstructure and Electrical Properties of Poly-N-isopropylacrylamide- N-vinylcarbazole Copolymers

  • Pierson, R.;Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2057-2060
    • /
    • 2009
  • Conducting poly-N-isopropylacrylamide-N-vinyl carbazole (PNI-nvc) copolymers were synthesized via in situ deposition technique by dissolving different weight percentages of N-vinyl carbazole (10, 20, 30, and 40%). The structural morphology and FT-IR studies support the interaction between PNI and N-vinyl carbazole. The temperaturedependent DC conductivity of PNI-nvc was studied within the range of 300 ${\leq}\;T\;{\leq}$ 500 K, presenting evidence for the transport properties of PNI-nvc. The DC conductivity of PNI-nvc copolymers signifies the future development of new nanocopolymers that acts as a multifunctional material.

The Physical Properties of Thermotropic Side-Chain Triblock Copolymers of n-Butyl Acrylate and a Comonomer with Azobenzene Group

  • Dan, Kyung-Sik;Kim, Byoung-Chul;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.313-318
    • /
    • 2009
  • The side chain liquid crystal triblock copolymers (TBCs), which underwent phase transitions below their decomposition temperature, were prepared by copolymerization of poly(n-butyl acrylate) and a comonomer containing the mesogenic azobenzene group. The physical properties of TBCs in the distinctive transition temperature ranges were investigated in terms of the liquid crystal (LC) content in the copolymers. The phase transition temperatures traced optically, thermally and rheologically were well coincided one another and clearly exhibited the phase transition of smectic-nematic-isotropic with increasing temperature. In the smectic phase, increasing temperature made the liquid crystal system more elastic, but viscosity (${\eta}'$) remained almost constant. In the nematic phase, increasing temperature abruptly decreased ${\eta}'$ and G', ultimately leading to isotropic phase. Both smectic and nematic phases exhibited Bingham viscosity behavior but the former gave much greater yield stress at the same LC content.

Synthesis and Characterization of ABA Type Block Copolymers of Trimethylene Carbonate and $\varepsilon$-caprolactone (Trimethylene Carbonate 와 $\varepsilon$-caprolactone ABA 트리블럭 공중합체의 합성 및 특성)

  • Jia, Yong-Tang;Kim, Hak-Yong;Jian Gong;Lee, Duok-Rae;Bin Ding;Narayan Bhattarai
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.352-354
    • /
    • 2002
  • A series of ABA type triblock copolymers of trimethylene carbonate (TMC) and $\varepsilon$-caprolactone($\varepsilon$-CL) with different molar ratio were synthesized using ethylene glycol as initiator and stannous octoate as catalyst by ring-opening bulk polymerization. The characterization of the triblock copolymers was characterized by $^1$H-NMR, $\^$13/C-NMR, FT-IR, GPC and DSC, and compared with random copolymer. (omitted)

  • PDF