• Title/Summary/Keyword: Coping thickness

Search Result 21, Processing Time 0.026 seconds

COLOR DIFFERNCE OF IN-CERAM BY THE VARIOUS POSTCORE MATERIALS AND COPING THICKNESS (지대치 코어 재료와 In-Ceram coping의 두께가 In-Ceram의 색에 미치는 영향)

  • Shim, Jig-Hyeon;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.634-644
    • /
    • 1995
  • The purpose of this study is to evaluate the color differences in the In-Ceram according to coping thickness and various abutment core materials ; amalgam, precious alloy, composite resin, non-precious alloy. After the porcelain was built up on the In-Ceram coping at the thicknes of 0.3mm and 0.5mm then it was cemented with glass ionomer cement to the post & core materials. The following results were obtained. 1. There were significant differences in the $L^*$ values $a^*$ and $b^*$ values in the cementation of different cores, to the In-Ceram(P<0.01). $L^*$ values were not significantly different between the composite resin to the In-Ceram and the $a^*\;b^*$ values were not significantly different between the amalgam and the non-precious alloy. 2. All of cementations of In-Ceram to the core materisal had color difference(${\Delta}E^*ab$) compared to the In-Ceram. In the 0.3mm thickness of the In-Ceram copping non-precious alloy indicated the greatest value, while the composite resin core showed the lowest value with a thickness of 0.5mm In-Ceram copping. 3. By controlloing the In-Ceram coping thickness $L^*$ value was significatly different(P<0.01), but not in $a^*$ and $b^*$ values. 4. In an amalgam, precious & non-prcious alloys there was a 1,74 to 3.06 range color difference in the controlled thickness of In-Ceram coping at the thickness of 0.3mm and 0.5mm. The above results suggest that the requirement of the sufficient thickness of In-Ceram coping and the suitable core material in order to get an estheti restoration by In-Ceram and also to intercept the original core color.

  • PDF

Comparison of the marginal fit of POM restorations with different thickness of metal copings (코핑 두께의 차이에 따른 POM 보철물의 변연적합도 연구)

  • Lim, Hyung-Tek
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • Purpose: The purpose of this in vitro study was to compare the marginal fit of POM restorations with 3 different thickness of metal coping. Methods: 2.0mm Occlusal reduction, 1.0mm preparation of axial wall with 6degree taper, and chamfer margin was prepared a maxillary first premolar on dentiform. Duplicate prepared die and, make 30 individual dies with Ni-Cr metal. Make 3 groups of 30 press ceramic on Metal crown with different thickness of metal coping; 10 of 0.1mm, 10 of 0.3mm, 10 of 0.5mm thickness metal coping. The marginal fit of the crowns was evaluated 50 points per 1 crown, around the crown margin circumference under a optical microscope at original magnification ${\times}100$. A 1-way analysis of variance (ANOVA) was used to compare data. Results: The mean marginal discrepancy for POM with 0.1mm metal copings was $72.56{\mu}m$, $67.83{\mu}m$ for 0.3mm metal coping POMs, and $72.56{\mu}m$ for 0.5mm metal coping POM. The 1-way ANOVA showed significant difference among 3 groups. Conclusion: The marginal fit of pressed-on-metal (POMs) was best with 0.3mm thickness of metal coping, fallowing by 0.1mm, and 0.5mm in the order.

The effect of different cooling rates and coping thicknesses on the failure load of zirconia-ceramic crowns after fatigue loading

  • Tang, Yu Lung;Kim, Jee-Hwan;Shim, June-Sung;Kim, Sunjai
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the influence of different coping thicknesses and veneer ceramic cooling rates on the failure load of zirconia-ceramic crowns. MATERIALS AND METHODS. Zirconia copings of two different thicknesses (0.5 mm or 1.5 mm; n=20 each) were fabricated from scanning 40 identical abutment models using a dental computer-aided design and computer-aided manufacturing system. Zirconia-ceramic crowns were completed by veneering feldspathic ceramics under different cooling rates (conventional or slow, n=20 each), resulting in 4 different groups (CONV05, SLOW05, CONV15, SLOW15; n=10 per group). Each crown was cemented on the abutment. 300,000 cycles of a 50-N load and thermocycling were applied on the crown, and then, a monotonic load was applied on each crown until failure. The mean failure loads were evaluated with two-way analysis of variance (P=.05). RESULTS. No cohesive or adhesive failure was observed after fatigue loading with thermocycling. Among the 4 groups, SLOW15 group (slow cooling and 1.5 mm chipping thickness) resulted in a significantly greater mean failure load than the other groups (P<.001). Coping fractures were only observed in SLOW15 group. CONCLUSION. The failure load of zirconia-ceramic crowns was significantly influenced by cooling rate as well as coping thickness. Under conventional cooling conditions, the mean failure load was not influenced by the coping thickness; however, under slow cooling conditions, the mean failure load was significantly influenced by the coping thickness.

Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: in vitro study of color masking ability

  • Oh, Seon-Hee;Kim, Seok-Gyu
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.368-374
    • /
    • 2015
  • PURPOSE. The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. MATERIALS AND METHODS. Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ${\phi}10mm{\times}0.4mm$) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (${\phi}10mm{\times}7mm$) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average $L^*$, $a^*$, $b^*$ values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (${\alpha}$=.05).The average shade difference (${\Delta}E$) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. RESULTS. The effects of zirconia specimen thickness (P<.001), abutment shade (P<.001), and type of zirconia copings (P<.003) on the final shade of the zirconia restorations were significant. The average ${\Delta}E$ value of Lava specimens (1 mm) between the A2 composite resin and gold alloy abutments was higher (close to the acceptability threshold of 5.5 ${\Delta}E$) than th ose between the A2 composite resin and other abutments. CONCLUSION. This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations.

Comparative study in marginal accuracy of several all ceramic crowns (전부도재관의 변연 적합도 비교평가)

  • Kim, Jeong-Mi;Jeoung, Su-Ha
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • Purpose: In this study, we tried to compare marginal accuracy when produce ceramic crown using all ceramic materials and existent metal-ceramic system. Material and methods: All-ceramic systems were E-max (Ivoclar/Vivadent, Lichtenstein), Lava(3M, U.S.A.) and Wol-ceram(Teamziereis, Germany). Metal-ceramic system(PFG) was composed of Au-Pt alloy (Metalor, Switzerlandand) and overlying ceramic(D-sign, Ivoclar/Vivadent, Lichtenstein). We fabricated metal master die with upper diameter of 7.95mm, bottom diameter of 9.00mm, height of 5.00mm, and taper of $6^{\circ}$. All ceramic system used 0.5mm thickness ceramic coping, while metalceramic system used 0.3 thickness metal coping. By adding dentin and enamel ceramics on each coping, a crown with a proximal thickness of 1.0 mm and occlusal thickness of 2.0mm was fabricated. Pressure of 2kg was applied for 10 seconds on each crown with static load compressor. Before and after cementation, we measured the marginal gap at 4 points of each crown using optical microscope. The data was analyzed using a Student's t test and repeated-measures of analyses of variance(ANOVA) followed by a Bonferroni test. A p value<0.05 was considered significant. Results: As experiment results, marginal accuracy of wol-ceram and Lava is no good when compared with marginal accuracy of PFG. But marginal accuracy of E.max is good when compared with PFG. This result showed not significant. The marginal accuracy of E.max is good when compared with marginal accuracy of wol-ceram and Lava. Conclusion: The marginal accuracy of E.max is very good when compared with marginal accuracy of another group.

  • PDF

Effect of support thickness on the adaptation of Co-Cr alloy copings fabricated using selective laser melting (출력 지지대 두께가 선택적 레이저 용융법으로 제작된 금속 하부구 조물 적합도에 미치는 영향)

  • Jae-Hong Kim;Se-Yeon Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.67-73
    • /
    • 2023
  • Purpose: This in vitro study aimed to evaluate the clinical acceptability of precision of fit of the support thickness of Co-Cr alloy copings fabricated using selective laser melting (SLM). Methods: Thirty dental stone models of maxillary left molar abutments were manufactured, images were taken using a scanner, and a computer-aided design program was used to design the form of a conventional metal ceramic crown coping. Overall, 30 single copings were made from Co-Cr alloy using SLM and divided into three support radius groups (0.1, 0.25, and 0.35 mm) of 10 for each. Digitized data were superimposed with three-dimensional inspection software to quantitatively obtain the machinability of a ceramic crown coping, and visual differences were confirmed using a color map. The root mean square values of the ceramic crown coping group were statistically analyzed using one-way analysis of variance (α=0.05). Results: The precision of fit was superior with 0.25 mm compared with 0.1 mm and 0.35 mm, and the results exhibited significant differences (p<0.05). All specimens showed that various support thicknesses did not exceed the clinically permitted value of 120 ㎛, which mean that more than 0.1 mm and 0.35 mm of support radius for SLM was adequate. Conclusion: The support thickness of Co-Cr alloy restoration fabricated using SLM is shown to affect the adaptation.

Fracture Strength Analysis of Monolithic Zirconia Ceramic by Abutment Shape (지르코니아 단일구조 전부도재관의 지대치 형태에 따른 파절 강도)

  • Kim, Won-Young;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.231-237
    • /
    • 2014
  • Purpose: This study was performed fracture strength test by conducted change of abutment and coping shape for suggesting monolithic all ceramic crown which has thin thickness and superior strength of the occlusal surface. Methods: The specimens on the four kinds abutment was made according to thickness of occlusal surface and angle of axis surface. And All ceramic coping specimens of 6 different kinds was made by the CAD/CAM Method. Compression strength test using the UTM and the verification of compression-stress situation using the 3D finite element method were conducted under optimum conditions. Results: 516C specimen was showed the strongest compression-fracture strength, followed by 516FR, 516F45, specimens. Did not show significant differences between 516FR and 516F45. 516C of the universal testing machine the specimen's surface that are within the vertical load is small, finite element method of a uniformly distributed load, so the value received suggests otherwise. Conclusion: In conclusion, abutments of monolithic ziconia ceramic when having a same thickness of the occlusal, as the angle of occlusal edge is small, the stress is well dispersed and it can endure well in the fracture.

A study on the fracture strength of collarless metal-ceramic fixed partial dentures

  • Yoon, Jong-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.134-141
    • /
    • 2010
  • PURPOSE. The objective of this study was to evaluate fracture strength of collarless metal-ceramic FPDs according to their metal coping designs. MATERIALS AND METHODS. Four different facial margin design groups were investigated. Group A was a coping with a thin facial metal collar, group B was a collarless coping with its facial metal to the shoulder, group C was a collarless coping with its facial metal 1 mm short of the shoulder, and group D was a collarless coping with its facial metal 2 mm short of the shoulder. Fifteen 3-unit collarless metal-ceramic FPDs were fabricated in each group. Finished FPDs were cemented to PBT (Polybutylene terephthalate) dies with resin cement. The fracture strength test was carried out using universal testing machine (Instron 4465, Instron Co., Norwood MA, USA) at a cross head speed of 0.5 mm/min. Aluminum foil folded to about 1 mm of thickness was inserted between the plunger tip and the incisal edge of the pontic. Vertical load was applied until catastrophic porcelain fracture occurred. RESULTS. The greater the bulk of unsupported facial shoulder porcelain was, the lower the fracture strength became. However, there were no significant differences between experimental groups (P > .05). CONCLUSION. All groups of collarless metal-ceramic FPDs had higher fracture strength than maximum incisive biting force. Modified collarless metal-ceramic FPD can be an alternative to all-ceramic FPDs in clinical situations.

Fracture resistance and marginal fidelity of zirconia crown according to the coping design and the cement type (코핑 디자인과 시멘트에 따른 지르코니아 도재관의 파절 저항성)

  • Sim, Hun-Bo;Kim, Yu-Jin;Kim, Min-Jeong;Shin, Mee-Ran;Oh, Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.194-201
    • /
    • 2010
  • Purpose: The purpose was to compare the marginal fidelity and the fracture resistance of the zirconia crowns according to the various coping designs with different thicknesses and cement types. Materials and methods: Zirconia copings were designed and fabricated with various thicknesses using the CAD/CAM system (Everest, KaVo Dental GmbH, Biberach., Germany). Eighty zirconia copings were divided into 4 groups (Group I: even 0.3 mm thickness, Group II: 0.3 mm thickness on the buccal surface and the buccal half of occlusal surface and the 0.6 mm thickness on the lingual surface and the lingual half of occlusal surface, Group III: even 0.6 mm thickness, Group IV: 0.6 mm thickness on the buccal surface and the buccal half of occlusal surface and the 1.0 mm thickness on the lingual surface and the lingual half of occlusal surface) of 20. By using a putty index, zirconia crowns with the same size and contour were fabricated. Each group was divided into two subgroups by type of cement: Cavitec$^{(R)}$ (Kerr Co, USA) and Panavia-$F^{(R)}$ (Kuraray Medical Inc, Japan). After the cementation of the crowns with a static load compressor, the marginal fidelity of the zirconia crowns were measured at margins on the buccal, lingual, mesial and distal surfaces, using a microscope of microhardness tester (Matsuzawa, MXT-70, Japan, ${\times}100$). The fracture resistance of each crown was measured using a universal testing machine (Z020, Zwick, Germany) at a crosshead speed of 1 mm/min. The results were analyzed statistically by the two-way ANOVA and oneway ANOVA and Duncan's multiple range test at $\alpha$=.05. Results: Group I and III showed the smallest marginal fidelity, while group II demonstrated the largest value in Cavitec$^{(R)}$ subgroup (P<.05). For fracture resistance, group III and IV were significantly higher than group I and II in Cavitec$^{(R)}$ subgroup (P<.05). The fracture resistances of Panavia-$F^{(R)}$ subgroup were not significantly different among the groups (P>.05). Panavia-$F^{(R)}$ subgroup showed significantly higher fracture resistance than Cavitec$^{(R)}$ subgroup in group I and II (P<.05). Conclusion: Within the limitation of this study, considering fracture resistance or marginal fidelity and esthetics, a functional ceramic substructure design of the coping with slim visible surface can be used for esthetic purposes, or a thick invisible surface to support the veneering ceramic can be used depending on the priority.

A STUDY ON FRACTURE STRENGTH OF COLLARLESS METAL CERAMIC CROWN WITH DIFFERENT METAL COPING DESIGN (금속코핑 설계에 따른 Collarless Metal Ceramic Crown의 파절강도에 관한 연구)

  • Yun, Jong-Wook;Yang, Jae-Ho;Chang, Ik-Tae;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.454-464
    • /
    • 1999
  • The metal ceramic crown is currently the most popular complete veneer restoration in dentistry, but in many cases, the metal cervical collar at the facial margin is unesthetic and unacceptable. Facial porcelain margin has been used in place of it. But this dose not solve the problems, such as dark gingival discoloration and cervical opaque reflection of porcelain veneer. Recently, metal copings which were designed to terminate its labio-cervical end on the axial walls coronal to the shoulder have been clinically used to solve the esthetic problem of metal ceramic crown. But in this design, porcelain veneer of labio-cervical area which is not supported by metal may not be able to resist the stress during cementation and mastication. The purpose of this study was to evaluate fracture strength and fractured appearance of crowns according to different coping designs. A resin maxillary left central incisor analogue was prepared for a metal ceramic crown, and metal dies were made with duplication mold. Metal copings were made and assigned to one of four groups based on facial framework designs: group 1, coping with 0.5mm metal collar; group 2, metal extended to the shoulder; group 3, metal extended to 1mm coronal tn the shoulder: group 4, metal extended to 2mm coronal to the shoulder. Copings and crowns were adjusted to be same size and thickness, and cemented to metal dies with zinc phosphate cement by finger pressure. Fracture strength was measured with Instron Universal Testing Machine. Metal dies were anchored in Three-way-vice at 3mm below finish line and at $130^{\circ}$ inclined to the long axis of the crown. Load was directed lingually at 2mm below midincisal edge. Load value at initial crack and at catastrophic fracture was recorded. The results obtained were as follows : 1. Fracture strength values at initial crack were higher in groups 1, 2 than in groups 3, 4 but this difference was not statistically significant(P<0.05). 2. Conventional metal collared crown had greater catastrophic fracture strength than any other collarless crowns. 3. The greater the labial metal coping reduction, the lower the catastrophic fracture strength of crowns but when more than 1mm of labial metal reduction was done, the difference in strengths was not statistically significant(p<0.05). 4. The strongest collarless coping design was group 2.

  • PDF