• Title/Summary/Keyword: Cooperative Relaying

Search Result 123, Processing Time 0.032 seconds

Cooperative Beamformer Design for Improving Physical Layer Security in Multi-Hop Decode-and-Forward Relay Networks

  • Lee, Han-Byul;Lee, Jong-Ho;Kim, Seong-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.187-199
    • /
    • 2016
  • In this paper, we consider secure communications in multi-hop relaying systems, where multiple decode-and-forward (DF) relays are located at each individual hop and perform cooperative beamforming to improve physical layer security. In order to determine the cooperative relay beamformer at each hop, we propose an iterative beamformer update scheme using semidefinite relaxation and bisection techniques. Numerical results are presented to verify the secrecy rate performance of the proposed scheme.

Outage Analysis of a Cooperative Multi-hop Wireless Network for Rayleigh Fading Environment

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.133-138
    • /
    • 2011
  • This paper presents an information theoretic outage analysis for physical layer of a cooperative multihop wireless network. Our analysis shows that cooperation by selecting a proper relay at each hop increases the coverage or data rate of the network. In our analysis we consider both symmetric and asymmetric network model. We also investigate the availability of cooperative relay at each hop and show that end-to-end performance of the network depends on the relay selection procedure at each hop. We also verify our analytical results with simulations.

Outage Analysis of Cooperative Transmission in Two-Dimensional Random Networks over Rayleigh Fading Channels

  • Tran, Trung Duy;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.262-268
    • /
    • 2011
  • In this paper, we evaluate the outage performance of cooperative transmission in two-dimensional random networks. Firstly, we derive the joint distributions of the source-relay and the relay-destination links. Secondly, the outage probability for the decode-and-forward relaying system is derived when selection combining (SC) is employed at the destination. Finally, we calculate the average outage probability of the system and then attempt to express it by a simple approximate expression. The simulation results are presented to verify the accuracy of the derivations. Similar to deterministic networks, the cooperative transmission in random networks outperforms direct transmission at a high signal-to-noise ratio (SNR).

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.

An Energy Saving Cooperative Communications Protocol without Reducing Spectral Efficiency for Wireless Ad Hoc Networks

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.107-112
    • /
    • 2009
  • Spectral efficiency of current two-phase cooperative communications protocols is low since in the second time the relay forwards the same signal received from the source to the destination, the source keeps silent in this time. In this paper, we propose a novel cooperative communications protocol where the signal needed to transmit to the destination is sent in both phases, the source and the relay also transmit different signal to the destination thus no loss of spectral efficiency. This protocol performs signal selection based on log-likelihood ratio (LLR) at relay and maximum likelihood (ML) detection at destination. While existing protocols pay for a worse performance than direct transmission in the low SNR regime which is of special interest in ad hoc networks, ours is better over the whole range of SNR. In addition, the proposal takes advantages of bandwidth efficiency, long delay and interference among many terminals in ad hoc network. Simulation results show that the proposed protocol can significantly save total energy for wireless ad hoc networks.

Capacity of Multiuser Diversity with Cooperative Relaying in Wireless Networks (협동 릴레이와 다중 사용자 다이버시티를 이용하는 무선 통신 네트워크의 용량 분석)

  • Joung, Hee-Jin;Mun, Cheol;Seo, Jeong-Tae;Yoo, Kang-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.423-428
    • /
    • 2008
  • We consider the use of cooperative diversity in a multiuser wireless data network. This paper provides an analysis of the interaction between cooperative diversity and multiuser diversity on downlink channels. By using approximation of the signal-to-noise ratio (SNR) distribution of each cooperative diversity link by Gamma distribution, an analytic expression is derived for the average throughput of a single-cell wireless system with multiple cooperative diversity links combined with a fair-access scheduler. The proposed analytic approach is verified through comparisons with simulated results and shows that cooperative diversity makes the detrimental impacts on multiuser diversity.

Spectrum Hole Utilization in Cognitive Two-way Relaying Networks

  • Gao, Yuan;Zhu, Changping;Tang, Yibin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.890-910
    • /
    • 2014
  • This paper investigates the spectrum hole utilization of cooperative schemes for the two-way relaying model in order to improve the utilization efficiency of limited spectrum holes in cognitive radio networks with imperfect spectrum sensing. We propose two specific bidirectional secondary data transmission (BSDT) schemes with two-step and three-step two-way relaying models, i.e., two-BSDT and three-BSDT schemes, where the spectrum sensing and the secondary data transmission are jointly designed. In the proposed cooperative schemes, the best two-way relay channel between two secondary users is selected from a group of secondary users serving as cognitive relays and assists the bi-directional communication between the two secondary users without a direct link. The closed-form asymptotic expressions for outage probabilities of the two schemes are derived with a primary user protection constraint over Rayleigh fading channels. Based on the derived outage probabilities, the spectrum hole utilization is calculated to evaluate the percentage of spectrum holes used by the two secondary users for their successful information exchange without channel outage. Numerical results show that the spectrum hole utilization depends on the spectrum sensing overhead and the channel gain from a primary user to secondary users. Additionally, we compare the spectrum hole utilization of the two schemes as the varying of secondary signal to noise ratio, the number of cognitive relays, and symmetric and asymmetric channels.

Outage Performance Analysis of Partial Relay Selection Based Opportunistic Cooperation in Decode-and-Forward Relaying Systems (디코딩 후 전달 중계 시스템에서 부분 중계 노드 선택 기법 기반 기회적 협력 방식의 아웃티지 성능 분석)

  • Lee, Sangjun;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1804-1810
    • /
    • 2013
  • In this paper, we study the opportunistic cooperation scheme that improves the outage performance through the efficient selection between a cooperative mode and a non-cooperative mode. Especially, in decode-and-forward relaying systems, we analyze the outage performance for the opportunistic cooperation using partial relay selection, where closed-form expressions of exact and asymptotic outage probabilities are derived assuming independent and identically distributed Rayleigh fading channels. In the numerical results, we verify the derived expressions, and investigate the outage performances for various target data rates and different numbers of relays. Also, we compare the outage performances of the conventional cooperation scheme and the opportunistic cooperation scheme.

Design & analysis of transmission protocol for exploiting cooperative MIMO in broadband wireless networks (광대역 무선 네트워크의 성능 향상을 위한 분산 다중 안테나 기반 전송 프로토콜의 설계 및 분석)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.15-18
    • /
    • 2005
  • Cooperative diversity is a transmission technique, in which multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we propose a new type of cooperative transmission protocol with a full rate and show that its BER performance is improved by 8dB over the existing protocol under the AF (amplify-and-forward) mode of relaying.

  • PDF

Outage Analysis and Power Allocation for Distributed Space-Time Coding-Based Cooperative Systems over Rayleigh Fading Channels

  • Lee, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2017
  • In this research, we study the outage probability for distributed space-time coding-based cooperative (DSTC) systems with amplify-and-forward relaying over Rayleigh fading channels with a high temporal correlation where the direct link between the source and the destination is available. In particular, we derive the upper and lower bounds of the outage probability as well as their corresponding asymptotic expressions. In addition, using only the average channel powers for the source-to-relay and relay-to-destination links, we propose an efficient power allocation scheme between the source and the relay to minimize the asymptotic upper bound of the outage probability. Through a numerical investigation, we verify the analytical expressions as well as the effectiveness of the proposed efficient power allocation. The numerical results show that the lower and upper bounds tightly correspond to the exact outage probability, and the proposed efficient power allocation scheme provides an outage probability similar to that of the optimal power allocation scheme that minimizes the exact outage probability.