• Title/Summary/Keyword: Cooling Temperature Ratio

Search Result 418, Processing Time 0.025 seconds

Study on the Averaging Approach for Microchannel Heat Sinks for Electronics Cooling (평균 접근법을 이용한 전자 장치 냉각용 마이크로 채널 히트 싱크에 대한 연구)

  • Kim, Dong-Kwon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1430-1435
    • /
    • 2004
  • The present paper is devoted to the modeling based on an averaging approach for microchannel heat sinks. Firstly, analytic solutions for velocity and temperature distributions for low-aspect-ratio microchannel heat sinks are presented by using the averaging approach. When the aspect ratio of the microchannel is smaller than 1, analytic solutions accurately evaluate thermal resistances of heat sinks while the previous model cannot predict thermal resistances. Secondly, asymptotic solutions for velocity and temperature distributions at low-aspect-ratio limit and at high-aspect-ratio limit are presented by using the scale analysis. Asymptotic solutions are very simple, but shown to predict thermal resistances accurately.

  • PDF

The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer (노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구)

  • Lee, J.W.;Kang, Y.G.;Baek, B.J.;Park, B.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF

Effects of Hydrophilic Treatment by IAR Method on the Packing Characteristic Value (이온 보조 반응법에 의한 친수성 처리가 충전재 특성값에 미치는 영향)

  • Kim, Jin-Ho;Choe, Chung-Hyeon;Gang, Byeong-Ha;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.554-560
    • /
    • 2001
  • Hydrophilic treatment of the packing materials in a cooling tower has been made by the ion assisted reaction (IAR) method to increase the wettability of the packing materials. The effects of hydrophilic treatment of packing materials on the performance of a cooling tower have been investigated in a wide range of operating parameters, such as water flow rate, air flow rate, and the water inlet temperature. A pilot cooling tower has been designed and built to model a counter-flow cooling tower. The results obtained indicate that the packing characteristic value with hydrophilic packing could be substantially increased by 6∼19.3% than that with conventional packing in the operating ranges considered. The correlations of the packing characteristic value as a function of water-to-air ratio are suggested for a counter-flow cooling tower with hydrophilic packing as well as with conventional packing.

A Study of Lorentz-Meutzner's Two Evaporator Refrigeration System Using Alternative Refrigerant Mixtures (대체혼합냉매를 사용하는 Lorentz-Meutzner의 이중 증발기 냉동 시스템의 성능에 관한 연구)

  • Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.123-136
    • /
    • 1992
  • A preliminary thermodynamic design model of two-evaporator refrigerator/freezer system is constructed. This system is based on Lorentz-Meutzner cycle using refrigerant mixtures. This model screens alternative refrigerant (R32, R125, R143a, R22, R134a, R152a, R124, R142b, R123) mixtures to select the best performance-giving refrigerant mixtures and its composition for the system. Also, it estimates the effects of cooling temperatures of intercoolers, evaporator's area ratio, cooling load ratio on the performance of the system. The COP of the system ranges from 1.4 to 1.6, which is superior to that of the single evaporator system charged with R12 by 13% to 29%. Among 15 mixtures, R22/R123, R143a/R123, R32/R142b, and R32/R124 (in the order of high COP) are most recommendable. For the case of R22/R123, R22 mass fraction more than 0.5(Load Ratio=1.0) or 0.7(Load Ratio=0.33) is recomended in order to replace R12 without reduction in volumetric capacity when keeping the compressor as the same one. COP has the highest value with X(R22)=0.7 and 0.8, respectively. For the case of R143a/R123, in the similar manner, mass fraction of R143a is more than 0.5 or 0.6 while best performance occurs at X(R143a)=0.8. Higher temperature intercooler is more important for the performance of the system than lower temperature intercooler. The area ratio of evaporators is roughly proportional to load ratio of the evaporators.

  • PDF

Thermal Analysis on Triple-Passage Heat Exchangers for a Continuous Hot-Steel Tube Cooling System

  • Ko, Bong-Hwan;Park, Seung-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.10-18
    • /
    • 2002
  • The objective of present study is to analyze a concentric triple-passage heat exchanger for an optimal design of a continuous hot steel-tube cooling system, where a hot-steel tube line is passing through an antioxidant gas with a constant speed. Velocities and temperatures of the inert gas flowing between inner and outer tubes are calculated theoretically for laminar and numerically for turbulent flow regimes. From their profiles Nusselt numbers and friction factors are calculated (or various ratios of inner/outer tube radii and relative velocities. With these Nusselt numbers triple-passage heat exchangers are investigated for their thermal characteristics. It is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since local heat transfer coefficients for flows through an annulus are dependent on local wall heat flux ratios.

Thermal analysis on triple-passage heat exchangers for a hot tube cooling system (고온의 강관 냉각용 삼중 열교환기에 대한 열해석)

  • 고봉환;박승호;신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.615-623
    • /
    • 1999
  • The objective of present study is to analyze a hot steel-tube cooling system as a kind of concentric triple-passage heat exchanger, whose inner tube is moving with a constant speed. Velocities and temperatures of an antioxidant gas flowing between inner and outer tubes are calculated theoretically for both laminar and turbulent flow regimes and used to give Nusselt numbers and friction factors with respect to various radius ratios and velocity ratios. In addition, it is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since the local heat transfer coefficients are dependent on the local heat flux ratios.

  • PDF

Undrained Behavior of Weathered Granite Soil of Heating-Cooling Repeated Acts Using Temperature Control Triaxial Test (온도변화 삼축압축 실험을 이용한 Heating-Cooling 반복 작용시 화강풍화토의 비배수 거동)

  • Shin, Seung-Min;Sin, Chun-Won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, the impact of sand and weathered granite soil is analyzed by changing the internal temperature from $20^{\circ}C{\sim}70^{\circ}C$C by installing a heating coil inside the triaxial cell. To check the effect on weathered granite soil due to increase of temperature and number of heating-coiling cycles are analyzed by measuring the temperature by using thermometer installed inside the triaxial cell and due to that deviator stress also occurred during the consolidated undrained test. To analyze the effect of weathered granite soil with change of temperature during undrained testing. The deviator stress and pore pressure is measured. As a result, pore pressure increases and the deviator stress decreases with rise of temperature.

PCCS Analysis Model for the Passively Cooled Steel Containment

  • Hwang, Y.D.;Chung, B.D.;Cho, B.H.;Chang, M.H.;Jeong, Ik
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.26-39
    • /
    • 1998
  • The containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5 is modified to incorporate the passive containment cooling models. The correlations are selected from the existing experimental heat transfer correlations to model the natural and mixed convection in annular space between the containment shell and the shield building. The evaporative heat transfer of the water film on the outer shell of the containment is modeled using the correlations derived from the analogy between the heat and mass transfer. The modified code is applied to the Ap600 containment transient analysis for the model verification and the results are compared to the results of GOTHIC calculation done by Westinghouse. Also, d series of parametric sensitivity studies of heat transfer correlations, water film ratio and delay time of the wet cooling on the containment peak pressure and temperature following LOCA are performed for the containment of 1000MWe passive plant, KP1000.

  • PDF

A study on the heat transfer of the turbocharged gasoline engine (터보과급 가솔린기관의 열전달에 관한 연구)

  • 최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF

A Study for the Output Increament of the Hydrogen Gas Turbine with Water Injection (물분사 수소 가스터빈의 출력 향상을 위한 연구)

  • Jung, K.S.;Oh, B.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • Most of today's energy supply is obtained from fossil fuels. Despite of high energy density, higher store efficiency and long mileage, fossil fuels cause environmental pollution and their reserves are limited. In this study pure hydrogen gas and oxygen gas are burned without the emission of pollution. A gas turbine is used to obtain power. Water is injected into a combustor, which prevents overheating and recovers cooling heat. Excessively supplied water is recirculated. With variation of mass flow rate and equivalence ratio, the affection of water injection rate and the temperature of injected water on efficiency and power are experimented. Injected water gets cooling heat, is expanded from liquid to vapor and raises the thermal efficiency. It is enable to determine the rate of water injection, which makes the maximum power. The increase of temperature of water injection raises the efficiency of the system.

  • PDF