• Title/Summary/Keyword: Converting enzyme inhibitor

Search Result 147, Processing Time 0.021 seconds

The Korean Cough Guideline: Recommendation and Summary Statement

  • Rhee, Chin Kook;Jung, Ji Ye;Lee, Sei Won;Kim, Joo-Hee;Park, So Young;Yoo, Kwang Ha;Park, Dong Ah;Koo, Hyeon-Kyoung;Kim, Yee Hyung;Jeong, Ina;Kim, Je Hyeong;Kim, Deog Kyeom;Kim, Sung-Kyoung;Kim, Yong Hyun;Park, Jinkyeong;Choi, Eun Young;Jung, Ki-Suck;Kim, Hui Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • Cough is one of the most common symptom of many respiratory diseases. The Korean Academy of Tuberculosis and Respiratory Diseases organized cough guideline committee and cough guideline was developed by this committee. The purpose of this guideline is to help clinicians to diagnose correctly and treat efficiently patients with cough. In this article, we have stated recommendation and summary of Korean cough guideline. We also provided algorithm for acute, subacute, and chronic cough. For chronic cough, upper airway cough syndrome (UACS), cough variant asthma (CVA), and gastroesophageal reflux disease (GERD) should be considered. If UACS is suspicious, first generation anti-histamine and nasal decongestant can be used empirically. In CVA, inhaled corticosteroid is recommended in order to improve cough. In GERD, proton pump inhibitor is recommended in order to improve cough. Chronic bronchitis, bronchiectasis, bronchiolitis, lung cancer, aspiration, angiotensin converting enzyme inhibitor, habit, psychogenic cough, interstitial lung disease, environmental and occupational factor, tuberculosis, obstructive sleep apnea, peritoneal dialysis, and idiopathic cough can be also considered as cause of chronic cough. Level of evidence for treatment is mostly low. Thus, in this guideline, many recommendations are based on expert opinion. Further study regarding treatment for cough is mandatory.

Revised Korean Cough Guidelines, 2020: Recommendations and Summary Statements

  • Joo, Hyonsoo;Moon, Ji-Yong;An, Tai Joon;Choi, Hayoung;Park, So Young;Yoo, Hongseok;Kim, Chi Young;Jeong, Ina;Kim, Joo-Hee;Koo, Hyeon-Kyoung;Rhee, Chin Kook;Lee, Sei Won;Kim, Sung Kyoung;Min, Kyung Hoon;Kim, Yee Hyung;Jang, Seung Hun;Kim, Deog Kyeom;Shin, Jong Wook;Yoon, Hyoung Kyu;Kim, Dong-Gyu;Kim, Hui Jung;Kim, Jin Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.4
    • /
    • pp.263-273
    • /
    • 2021
  • Cough is the most common respiratory symptom that can have various causes. It is a major clinical problem that can reduce a patient's quality of life. Thus, clinical guidelines for the treatment of cough were established in 2014 by the cough guideline committee under the Korean Academy of Tuberculosis and Respiratory Diseases. From October 2018 to July 2020, cough guidelines were revised by members of the committee based on the first guidelines. The purpose of these guidelines is to help clinicians efficiently diagnose and treat patients with cough. This article highlights the recommendations and summary of the revised Korean cough guidelines. It includes a revised algorithm for the evaluation of acute, subacute, and chronic cough. For a chronic cough, upper airway cough syndrome (UACS), cough variant asthma (CVA), and gastroesophageal reflux disease (GERD) should be considered in differential diagnoses. If UACS is suspected, first-generation antihistamines and nasal decongestants can be used empirically. In cases with CVA, inhaled corticosteroids are recommended to improve cough. In patients with suspected chronic cough due to symptomatic GERD, proton pump inhibitors are recommended. Chronic bronchitis, bronchiectasis, bronchiolitis, lung cancer, aspiration, intake of angiotensin-converting enzyme inhibitor, intake of dipeptidyl peptidase-4 inhibitor, habitual cough, psychogenic cough, interstitial lung disease, environmental and occupational factors, tuberculosis, obstructive sleep apnea, peritoneal dialysis, and unexplained cough can also be considered as causes of a chronic cough. Chronic cough due to laryngeal dysfunction syndrome has been newly added to the guidelines.

The Radioprotective Effect and Mechanism of Captopril on Radiation Induced Lung Damage in Rat (방사선조사에 의한 쥐 폐손상에 방사선보호제로서 Captopril의 역할에 관한 연구)

  • Song Mi Hee;Lee Kyung Ja;Koo Heasoo;Oh Won Young
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.190-198
    • /
    • 2001
  • Purpose : It was reported that Captopril (angiotensin converting enzyme inhibitor) had an effect to reduce the pneumonitis and pulmonary fibrosis induced by radiation in rat. We peformed this study to investigate the radioprotective effect and mechanism of Captopril. Methods and Materials : The comparison was made between the radiation only group and the combined Captopril and radiation group by examining histopathologic findings and immunohistochemical stains $(TNF\alpha\;and\;TGF\beta1)$ at 2 and 8 weeks after irradiation. Each group has 8 to 10 rats (Sprague-Dawley). 12.5 Gy of X-ray was irradiated to the left hemithorax in a single fraction. Captopril (50 mg/kg/d) mixed with water was given per oral and continuously from 1 week prior to irradiation up to 8th week of the experiment. Result : In the combined Captopril and radiation group, the histopathologic changes which were hemorrhage into alveolar space, changes of alveolar epithelium, bronchial epithelium and blood vessels, and perivascular edema were less severe than in the radisation only group at 2 weeks. At 8 weeks, the alveolar epithelial changes and perivascular edema were less prominant in the combined Captopril and radiation group. At 2 weeks, the $TNF\alpha$ expression of the combined Captopril and radiation group was markedly decreased at the alveolar epithelium (p<0.01), lymphoid tissue (p=0.06) and the macrophage of alveolar space (p<0.01) compared with the radiation only group. Furthermore the $TGF\beta1$ expression was significantly prominant at the alveolar epithelium (p<0.02) and the macrophage in alveolar space (p<0.02). At 8 weeks, the expression of $TNF\alpha\;and\;TGF\beta1$ of most sites, except $TGF\beta1$ of the macrophage of alveolar space (p=0.09), showed no significant difference between 2 groups. Conclusion : This study revealed that early lung damage induced by irradiation was reduced with the addition of Captopril in the latent and early pneumonitis phase. The expression of $TNF\alpha\;and\;TGF\beta1$ at 2 weeks and $TGF\beta1$ at 8 weeks was further decreased in the combined Captopril and radiation group than the radiation only group. From these results, it may be concluded that the proinflammatoy cytokine $(TNF\alpha)$ and fibrogenic cytokine $(TGF\beta1)$ probably play the role of the radioprotective mechanism in Captopril.

  • PDF

Effect of angiotensin II inhibition on the epithelial to mesenchymal transition in developing rat kidney (발생 중인 백서 신장에서 Angiotensin II 억제가 epithelial to mesenchymal transition에 미치는 효과)

  • Yim, Hyung-Eun;Yoo, Kee-Hwan;Bae, In-Sun;Hong, Young-Sook;Lee, Joo-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.8
    • /
    • pp.944-952
    • /
    • 2009
  • Purpose : To investigate the effects of angiotensin II inhibition on the epithelial to mesenchymal transition (EMT) in the developing kidney, we tested the expression of EMT markers and nestin in angiotensin converting enzyme (ACE) inhibitor-treated kidneys. Methods : Newborn rat pups were treated with enalapril (30 mg/kg/d) or a vehicle for 7 days. Immunohistochemistry for the expression of ${\alpha}$-smooth muscle actin (SMA), E-cadherin, vimentin, and nestin were performed. The number of positively-stained cells was determined under 100 magnification in 10 random fields. Results : In the enalapril-treated group, ${\alpha}SMA-positive$ cells were strongly expressed in the dilated tubular epithelial cells. The number of ${\alpha}SMA-positive$ cells in the enalapril-treated group increased in both the renal cortex and medulla, compared to the control group (P<0.05). The expression of E-cadherin-positive cells was dramatically reduced in the cortical and medullary tubular epithelial cells in the enalapril-treated group (P<0.05). The number of vimentin- and nestin-positive cells in the cortex was not different in comparisons between the two groups; however, their expression increased in the medullary tubulointerstitial cells in the enalapril-treated group (P<0.05). Conclusion : Our results show that ACE inhibition in the developing kidney increases the renal EMT by up-regulating ${\alpha}SMA$ and down-regulating E-cadherin. Enalapril treatment was associated with increased expression of vimentin and nestin in the renal medulla, suggesting that renal medullary changes during the EMT might be more prominent, and ACE inhibition might differentially modulate the expression of EMT markers in the developing rat kidney.

Influence of Blockade of Sympathetic Nervous System, Renin-Angiotensin System, and Vasopressin System on Basal Blood Pressure Levels and on Pressor Response to Norepinephrine, Angiotensin II, and Vasopressin (교감신경계, Renin-Angiotensin계, Vasopressin계의 차단이 혈압 및 Norepinephrine, Angiotensin II 및 Vasopressin의 승압효과에 미치는 영향)

  • Chung, Haeng-Nam
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.61-74
    • /
    • 1992
  • Influence of the blockade of the three major pressor systems-sympathetic nervous system (SNS), renin-angiotensin system (RAS) and vasopressin system-on the pressor responsiveness to norepinephrine (NE), angiotensin II (AII), and vasopressin (VP) as well as on basal blood pressure (BP) levels was investigated in urethane-anesthetized rabbits. To block the SNS and RAS, chlorisondamine (CS) and pirenzepine (PZ), sympathetic ganglionic blockers, and enalapril (ENAL), an inhibitor of angiotensin converting enzyme, respectively were used. And for suppressing the VP system bremazocine (BREM), a kappa opiate receptor agonist shown to suppress plasma levels of VP, was employed. Each of CS (0.4 mg/kg), ENAL (2 mg/kg), and BREM (0.25 mg/kg) produced almost same levels of steady hypotensive state. The hypotensive effect of BREM was significantly attenuated by desmopressin, a synthetic VP-like analogue, suggesting the hypotension being at least in part due to suppression of plasma levels of VP. CS, ENAL and BREM elicited further fall of the BP which had been lowered by ENAL or BREM, CS or BREM, and CS or ENAL, respectively. The hypotension produced by both CS and PZ together with either of ENAL or BREM was more marked than that produced by the three drugs other than CS. CS potentiated the pressor response not only to NE but to AII and VP. The pressor effect of AII was increased by ENAL and BREM, too. The pressor response to VP was also enhanced by BREM. Blockade of ${\alpha}-adrenergic$ receptors with phentolamine or phenoxybenzamine potentiated the pressor response to AII and that to VP. The results on basal BP levels indicate that the three major pressor systems are all participating in control of BP, but SNS has the greatest potential for supporting BP. The finding that blockade of one of the pressor systems induced enhanced pressor responsiveness to the pressor hormone of that particular system as well as to the pressor hormone(s) of the other systems(s) provides evidence for important interactions among the three major pressor systems.

  • PDF

Bronchial Responsiveness in Patients with Mitral Valvular Heart Disease (승모판 심장질환 환자에서 기관지 반응성에 대한 연구)

  • Kim, Ho-Cheol;Kim, Min-Gu;Hwang, Young-Sil
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.5
    • /
    • pp.752-759
    • /
    • 1995
  • Background: Bronchial asthma is characterized by noctunal dyspnea, cough and wheezing because of airway hyperresponsiveness to nonspecific stimuli. These symptoms and signs are also observed in patients with congestive heart failure. Therefore, this is so called "cardiac asthma". There are lots of experimental and clinical datas to suggest that airway dysfunctions occur in acute and chronic congestive heart failure. However, it is still controversial whether bronchial hyperresponsiveness is present in patients with congestive heart failure. To assess whether bronchial hyperresponsiveness is present in patients with congestive heart failure and to demonstrate the relationship between bronchial responsiveness and vascular pressure, we performed methacholine provocation test in 11 patients with mitral valvular heart disease. Methods: All patients were in the New York Heart Association functional class II and treated continuously with digoxin and/or dichlozid and/or angiotensin converting enzyme inhibitor except one patient. All patients were undergone right and left side heart catheterization for hemodynamic measurements. A 20 percent fall of peak expiratory flow rate were considered as positive response to methacholine provocation test. Results: 1) Only one patient who has normal pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac index was positive in methacholine provocation test. 2) Their mean pulmonary artery pressure, pulmonary capillary wedge pressure were $21.72{\pm}9.70mmHg$, $15.45{\pm}8.69mmHg$ respectively which were significantly higher. Conclusion: It is speculated that in stable congestive heart failure patients, bronchial responsiveness as assessed by methacholine provocation test may not be increased.

  • PDF

The Radioprotective Effect and Mechanism of Captopril on Radiation Induced-Heart Damage in Rats (방사선 조사 후 발생한 흰쥐 심장손상에서 Captopril의 방어역할과 기전)

  • Chang Seung-Hee;Lee Kyung-Ja;Koo Heasoo
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.40-54
    • /
    • 2004
  • Purpose : Captopril (angiotension converting enzyme inhibitor) is known to have a radioproptective effect in the lungs, intestines and skin, but its effect in the heart is unclear. To investigate the radioprotectlve efiect and mechanism of captopril on the heart, the histopathological changes and immunohistochemical stains were compared with radiation alone, and radiation combined with captopril, in the rats. Materials and Methods : The histopathological changes and immunohistochemical stains ($TNF{\alpha}$, $TGF{\beta}1$, PDGF and FGF2) were examined in the radiation alone and the combined captopril and radiation groups, 2 and 8 weeks after irradiation. Each group consisted of 8 to 10 rats (Sprague-Dawley). Irradiation (12.5 Gy) was given to the left hemithorax in a single fraction. Captopril (50 mg/Kg/d) mixed with water, was given orally and continuously from the first week prior to, up to the 8th week of the experiment. Results : In the radiation alone group, the ventricle at 2 weeks after irradiation showed prominent edema (p=0.082) and fibrin deposit (p=0.018) compared to the control group. At 8 weeks, the edema was decreased and fibrosis increased compared to those at 2 weeks. The histopathological changes of the combined group were similar to those of the control group, due to the reduced radiation toxicity at 2 and 8 weeks. The endocardial fibrin deposit (p=0.047) in the atrium, and the interstitial fibrin deposit (p=0.019) and edema (p=0.042) of the ventricle were reduced significantly in the combined group compared to those in the radiation alone group at 2 weeks. The expressions of $TNF-{\alpha}$, $TGF-{\beta}1$, PDGF and FGF-2 in the radiation alone group were more increased than in the control group, especially in the pericardium and endocardium of the atrium at 2 weeks. At 8 weeks, the pericardial $TNF-{\alpha}$ and $TGF-{\beta}1$ in the radiation alone group continuously increased. The expressions of $TNF-{\alpha}$, $TGF-{\beta}1$ and PDGF were decreased in the combined group at 2 weeks. At 8 weeks, the expressions of $TNF-{\alpha}$ in the atrial and ventricular pericardia were markedly reduced (p=0.049, p=0.009). Conclusion : This study revealed that the early heart damage induced by radiation can be reduced by the addition of captopril in a rat model. The expressions of $TNF-{\alpha}$, $TGF-{\beta}1$ and PDGF were further decreased in the combined compared to the radiation alone group at both 2 and 8 weeks. From these results, it may be concluded that these cytokines probably play roles in the radioprotective mechanism of captopril from the radiation-induced heart toxicity, similarly to in other organs.