• 제목/요약/키워드: Converter Model

검색결과 780건 처리시간 0.024초

가중치 전압 모드 제어를 적용한 PC 전원용 다중출력 포워드 컨버터 (Multiple Output Forward Converter for PC Power Supply with Weighted Voltage Mode Control)

  • 이경주;김성민;이득기;정종진;김흥근
    • 전력전자학회논문지
    • /
    • 제6권4호
    • /
    • pp.307-316
    • /
    • 2001
  • 본 논문에서는 직류 특성과 절전 모드에서 비절전 모드 변환과 같은 부하 변동 시의 동특성을 동시에 개선할 수 있는 가중치 전압 제어를 적용한 PC 전원용 다중출력 포워드 컨버터를 설계하였다. 기생성분을 포함한 전력회로를 모델링하고 소신호 해석하였으며, 가중치 결정 방법과 전압 보상회로 설계 방법을 제시하였다. SABER 시뮬레이션과 실험을 통해 제안한 방법이 PC 전원의 직류 특성과 동특성을 향상시킴을 입증하였다.

  • PDF

높은 승압비를 갖는 부스트-플라이백 컨버터의 개선된 모델링 방법 (Improved Modeling and Control of Boost-Flyback Converter With High Step-Up Voltage Ratio)

  • 서상욱;이귀준;김래영;현동석
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes the aggregated modeling and control of integated boost-flyback converter (IBFC) for understanding of dynamics characteristic and designing of relevant controller. The basic concept of the aggregated modeling is to substitute the boost or the flyback converter with an equivalent current source. Since each converter with equivalent current source corresponds to the basic boost and flyback converters, the overall mathematical process is significantly simplified for the modeling. Afterwards each result is combined to construct the complete model of the IBFC, and the relevant controller is designed through the achieved small-signal model. Simulation and experimental results show excellent agreement with the theoretical expectations.

Design Methodology of a Three-Phase Dual Active Bridge Converter for Low Voltage Direct Current Applications

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Young-Pyo;Ryu, Myung-Hyo;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.482-491
    • /
    • 2018
  • The practical design methodology of a three-phase dual active bridge (3ph-DAB) converter applied to low voltage direct current (LVDC) applications is proposed by using a mathematical model based on the steady-state operation. An analysis of the small-signal model (SSM) is important for the design of a proper controller to improve the stability and dynamics of the converter. The proposed lead-lag controller for the 3ph-DAB converter is designed with a simplified SSM analysis including an equivalent series resistor (ESR) for the output capacitor. The proposed controller can compensate the effects of the ESR zero of the output capacitor in the control-to-output voltage transfer function that can cause high-frequency noises. In addition, the performance of the power converter can be improved by using a controller designed by a SSM analysis without additional cost. The accuracy of the simplified SSM including the ESR zero of the output capacitor is verified by simulation software (PSIM). The design methodology of the 3ph-DAB converter and the performance of the proposed controller are verified by experimental results obtained with a 5-kW prototype 3ph-DAB converter.

System Identification Method를 이용한 DC/DC 컨버터 상태진단 (A Operating Status Diagnosis of DC/DC Converter by System Identification)

  • 김철우;김태진
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.724-729
    • /
    • 2007
  • In this paper, we propose a new diagnosis method of DC/DC converter aging. The method is based on variations of the parasitic resistor for the aging process. We apply an on-line diagnosis of the DC/DC converter because the observation is not a device, but a system. This study proposes a method of DC/DC converter diagnosis by analyzing the variations of model on the variations of parasitic resistor.

A Study on Core Structure of High Frequency Transformer to Improve Efficiency of Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.295-299
    • /
    • 2014
  • Recently, module-integrated converter (MIC) research has shown interest in small-scale photovoltaic (PV) generation. The converter is capable of efficient power generation. In this system, the high frequency transformer should be made compact, and demonstrate high efficiency characteristics. This paper presents a core structure optimization procedure to improve the efficiency of a high frequency transformer of compact size. The converter circuit is considered in the finite element analysis (FEA) model, in order to obtain an accurate FEA result. The results are verified by the testing of prototypes.

축전지 충전기용 전압형 컨버터 (Voltage Source Converter for battery charging)

  • 곽주식;김제홍;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.265-267
    • /
    • 1995
  • A voltage source PWM converter with battery charging and AC/DC power conversion ability is proposed in this paper. The proposed voltage source PWM converter is independently controlled by active and reactive components and implemented by DSP controller. In UPS application the mathematical model of the voltage source PWM converter has been derived. Finally, the performance of the voltage source converter is shown and discussed through experimental results.

  • PDF

GaN MOSFET을 이용한 고밀도, 고효율 48V 버스용 3-출력 Buck Converter 설계 (A High Efficiency, High Power-Density GaN-based Triple-Output 48V Buck Converter Design)

  • 이상민;이승환
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a 70 W buck converter using GaN metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. This converter exhibits over 97 % efficiency, high power density, and 48 V-to-12 V/1.2 V/1 V (triple output). Three gate drivers and six GaN MOSFETs are placed in a 1 ㎠ area to enhance power density and heat dissipation capacity. The theoretical switching and conduction losses of the GaN MOSFETs are calculated. Inductances, capacitances, and resistances for the output filters of the three buck converters are determined to achieve the desired current, voltage ripples, and efficiency. An equivalent circuit model for the thermal analysis of the proposed triple-output buck converter is presented. The junction temperatures of the GaN MOSFETs are estimated using the thermal model. Circuit operation and temperature analysis are evaluated using a circuit simulation tool and the finite element analysis results. An experimental test bed is built to evaluate the proposed design. The estimated switch and heat sink temperatures coincide well with the measured results. The designed buck converter has 130 W/in3 power density and 97.6 % efficiency.

Digital Control of Phase-Shifted Full-Bridge PWM Converter

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.201-209
    • /
    • 2008
  • This paper presents the modeling and design of a digital controller for a phase-shifted full-bridge converter (PSFBC) in a discrete-time domain. The discretized PSFBC model is first derived and then analyzed considering the sampling effect and the system parameters. Based on this model, the digital controller is directly designed in a discrete-time domain. The simulation and experimental results are provided to show the validity of the proposed modeling and controller design.

DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델 (High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter)

  • 신주현;김우중;차한주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.

A New Control Model for a 3 PWM Converter with Digital Current Controller considering Delay and SVPWM Effects

  • Min, Dong-Ki;Ahn, Sung-Chan;Hyun, Dong-Seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.346-351
    • /
    • 1998
  • In design of a digital current controller for a 3-phase (3 ) voltage-source (VS) PWM converter, its conventional model, i.e., stationary or synchronous reference frame model, is used in obtaining its discretized version. It introduces, however, inherent errors since the following practical problems are not taken into consideration: the characteristics of the space vector-based pulse-width modulation (SVPWM) and the time delays in the process of sampling and computation. In this paper, the new hybrid reference frame model of the 3 VS PWM converter is proposed considering these problems. In addition, the direct digital current controller based on this model is designed without any prediction or extrapolation algorithm to compensate the time delay. So the control algorithm is made very simple. It represents no steady-state error in input current control and has the optimized transient responses. The validity of the proposed algorithm is proved by the computer simulation and experimental results.

  • PDF