• Title/Summary/Keyword: Convergence Solution

Search Result 1,928, Processing Time 0.032 seconds

THE CONVERGENCE OF FINITE ELEMENT GALERKIN SOLUTION FOR THE ROSENEAU EQUATION

  • Lee, H. Y.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.171-180
    • /
    • 1998
  • In this paper we analyze the convergence of the semidis-crete solution of the Roseneau equation. We introduce the auxiliary projection of the solution and derive the optimal convergence of the semidiscrete solution as well as the auxiliary projection in L2 normed space.

HÖLDER CONVERGENCE OF THE WEAK SOLUTION TO AN EVOLUTION EQUATION OF p-GINZBURG-LANDAU TYPE

  • Lei, Yutian
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.585-603
    • /
    • 2007
  • The author studies the local $H\ddot{o}lder$ convergence of the solution to an evolution equation of p-Ginzburg-Landau type, to the heat flow of the p-harmonic map, when the parameter tends to zero. The convergence is derived by establishing a uniform gradient estimation for the solution of the regularized equation.

A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams

  • Zamanian, M.;Rezaei, H.;Hadilu, M.;Hosseini, S.A.A.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.891-918
    • /
    • 2015
  • In many of microdevices a part of a microbeam is covered by a piezoelectric layer. Depend on the application a DC or AC voltage is applied between upper and lower side of the piezoelectric layer. A common method in many of previous works for evaluating the response of these structures is discretizing by Galerkin method. In these works often single mode shape of a uniform microbeam i.e. the microbeam without piezoelectric layer has been used as comparison function, and so the convergence of the solution has not been verified. In this paper the Galerkin method is used for discretization, and a comprehensive analysis on the convergence of solution of equation that is discretized using this comparison function is studied for both clamped-clamped and clamped-free microbeams. The static and dynamic solution resulted from Galerkin method is compared to the modal expansion solution. In addition the static solution is compared to an exact solution. It is denoted that the required numbers of uniform microbeam mode shapes for convergence of static solution due to DC voltage depends on the position and thickness of deposited piezoelectric layer. It is shown that when the clamped-clamped microbeam is coated symmetrically by piezoelectric layer, then the convergence for static solution may be obtained using only first mode. This result is valid for clamped-free case when it is covered by piezoelectric layer from left clamped side to the right. It is shown that when voltage is AC then the number of required uniform microbeam shape mode for convergence is much more than the number of required mode in modal expansion due to the dynamic effect of piezoelectric layer. This difference increases by increasing the piezoelectric thickness, the closeness of the excitation frequency to natural frequency and decreasing the damping coefficient. This condition is often indefeasible in microresonator system. It is concluded that discreitizing the equation of motion using one mode shape of uniform microbeam as comparison function in many of previous works causes considerable errors.

ON THE PROXIMAL POINT METHOD FOR AN INFINITE FAMILY OF EQUILIBRIUM PROBLEMS IN BANACH SPACES

  • Khatibzadeh, Hadi;Mohebbi, Vahid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.757-777
    • /
    • 2019
  • In this paper, we study the convergence analysis of the sequences generated by the proximal point method for an infinite family of pseudo-monotone equilibrium problems in Banach spaces. We first prove the weak convergence of the generated sequence to a common solution of the infinite family of equilibrium problems with summable errors. Then, we show the strong convergence of the generated sequence to a common equilibrium point by some various additional assumptions. We also consider two variants for which we establish the strong convergence without any additional assumption. For both of them, each iteration consists of a proximal step followed by a computationally inexpensive step which ensures the strong convergence of the generated sequence. Also, for this two variants we are able to characterize the strong limit of the sequence: for the first variant it is the solution lying closest to an arbitrarily selected point, and for the second one it is the solution of the problem which lies closest to the initial iterate. Finally, we give a concrete example where the main results can be applied.

BROYDEN'S METHOD FOR OPERATORS WITH REGULARLY CONTINUOUS DIVIDED DIFFERENCES

  • Galperin, Anatoly M.
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.43-65
    • /
    • 2015
  • We present a new convergence analysis of popular Broyden's method in the Banach/Hilbert space setting which is applicable to non-smooth operators. Moreover, we do not assume a priori solvability of the equation under consideration. Nevertheless, without these simplifying assumptions our convergence theorem implies existence of a solution and superlinear convergence of Broyden's iterations. To demonstrate practical merits of Broyden's method, we use it for numerical solution of three nontrivial infinite-dimensional problems.

CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION

  • Cunxia Liu;Wen Lu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.917-932
    • /
    • 2024
  • In this paper, we deal with the Euler-Maruyama (EM) scheme for stochastic differential equations driven by G-Brownian motion (G-SDEs). Under the linear growth and the local Lipschitz conditions, the strong convergence as well as the rate of convergence of the EM numerical solution to the exact solution for G-SDEs are established.

CONVERGENCE OF REGULARIZED SEMIGROUPS

  • Lee, Young S.
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • In this paper, we discuss convergence theorem for contraction C-regularized semigroups. We establish the convergence of the sequence of generators of contraction regularized semigroups in some sense implies the convergence of the sequence of the corresponding contraction regularized semigroups. Under the assumption that R(C) is dense, we show the convergence of generators is implied by the convergence of C-resolvents of generators.

  • PDF

A Study on the Acceleration of the Solution Convergence for the Rigid Plastic FEM (강소성 유한요소해석에서 해의 수렴 가속화에 관한 연구)

  • 최영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.347-350
    • /
    • 2004
  • In this paper, the acceleration is studied for the rigid-plastic FEM of metal forming simulation. In the FEM, the direct iteration and Newton-Raphson iteration are applied to obtain the initial solution and accurate solution respectively. In general, the acceleration scheme for the direct iteration is not used. In this paper, an Aitken accelerator is applied to the direct iteration. In the modified Newton-Raphson iteration, the step length or the deceleration coefficient is used for the fast and robust convergence. The step length can be determined by using the accelerator. The numerical experiments have been performed for the comparisons. The faster convergence is obtained with the acceleration in the direct and Newton-Raphson iterations.

  • PDF

GRAPH CONVERGENCE AND GENERALIZED CAYLEY OPERATOR WITH AN APPLICATION TO A SYSTEM OF CAYLEY INCLUSIONS IN SEMI-INNER PRODUCT SPACES

  • Mudasir A. Malik;Mohd Iqbal Bhat;Ho Geun Hyun
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.265-286
    • /
    • 2023
  • In this paper, we introduce and study a generalized Cayley operator associated to H(·, ·)-monotone operator in semi-inner product spaces. Using the notion of graph convergence, we give the equivalence result between graph convergence and convergence of generalized Cayley operator for the H(·, ·)-monotone operator without using the convergence of the associated resolvent operator. To support our claim, we construct a numerical example. As an application, we consider a system of generalized Cayley inclusions involving H(·, ·)-monotone operators and give the existence and uniqueness of the solution for this system. Finally, we propose a perturbed iterative algorithm for finding the approximate solution and discuss the convergence of iterative sequences generated by the perturbed iterative algorithm.