• Title/Summary/Keyword: Converged service

Search Result 138, Processing Time 0.025 seconds

Labor market forecasts for Information and communication construction business (정보통신공사업 인력수급차 분석 및 전망)

  • Kwak, Jeong Ho;Kwun, Tae Hee;Oh, Dong-Suk;Kim, Jung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.99-107
    • /
    • 2015
  • In this era of smart convergent environment wherein all industries are converged on ICT infrastructure and industries and cultures come together, the information and communication construction business is becoming more important. For the information and communication construction business to continue growing, it is very important to ensure that technical manpower is stably supplied. To date, however, there has been no theoretically methodical analysis of manpower supply and demand in the information and communications construction business. The need for the analysis of manpower supply and demand has become even more important after the government announced the road map for the development of construction business in December 2014 to seek measures to strengthen the human resources capacity based on the mid- to long-term manpower supply and demand analysis. As such, this study developed the manpower supply and demand forecast model for the information and communications construction business and presented the result of manpower supply and demand analysis. The analysis suggested that an overdemand situation would arise since the number of graduates of technical colleges decreased beginning 2007 because of fewer students entering technical colleges and due to the restructuring and reform of departments. In conclusion, it cited the need for the reeducation of existing manpower, continuous upgrading of professional development in the information and communications construction business, and provision of various policy incentives.

User Customized Web Interface Design Optimized for SaaS-based Digital Library System -focusing on the LinkSaaS Website- (SaaS 기반 전자도서관 시스템에 최적화된 사용자 맞춤형 웹 인터페이스 디자인 -LinkSaaS 웹사이트를 중심으로-)

  • Oh, Hyoung-Yong;Min, Byoung-Won;Oh, Yong-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.148-156
    • /
    • 2011
  • Recently, an introduction of the cloud computing causes rapid changes in every aspect of the internet environments including hardware, operating systems, applications, and their services. As the cloud computing environment based on SaaS are being developed to a form in which web platform technology and web cloud services are converged. The digital library system also has been being developed to a service model optimized to SaaS based cloud computing environment, which are different from ASP technology. From the web interface point of view, user customization of the SaaS based cloud computing environment is the most important fact. Therefore, this research work suggests a customized web interface considering usability and accessibility so that enterprises and individual users can be able to do an effortless internet browsing under the cloud computing environment. For this purpose, usability tests were carried out as the user customized web interface design were developed and applied to the LinkSaaS website. This paper work lastly presents an UI environment on which customized interface design for individual users can be formulated.

Bio-Sensing Convergence Big Data Computing Architecture (바이오센싱 융합 빅데이터 컴퓨팅 아키텍처)

  • Ko, Myung-Sook;Lee, Tae-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.

An Efficient Personal Information Collection Model Design Using In-Hospital IoT System (병원내 구축된 IoT 시스템을 활용한 효율적인 개인 정보 수집 모델 설계)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.140-145
    • /
    • 2019
  • With the development of IT technology, many changes are taking place in the health service environment over the past. However, even if medical technology is converged with IT technology, the problem of medical costs and management of health services are still one of the things that needs to be addressed. In this paper, we propose a model for hospitals that have established the IoT system to efficiently analyze and manage the personal information of users who receive medical services. The proposed model aims to efficiently check and manage users' medical information through an in-house IoT system. The proposed model can be used in a variety of heterogeneous cloud environments, and users' medical information can be managed efficiently and quickly without additional human and physical resources. In particular, because users' medical information collected in the proposed model is stored on servers through the IoT gateway, medical staff can analyze users' medical information accurately regardless of time and place. As a result of performance evaluation, the proposed model achieved 19.6% improvement in the efficiency of health care services for occupational health care staff over traditional medical system models that did not use the IoT system, and 22.1% improvement in post-health care for users who received medical services. In addition, the burden on medical staff was 17.6 percent lower on average than the existing medical system models.

A Study on Reading Survey for the Establishment of Goyang City Reading Culture Promotion Plan (고양시 독서문화진흥 종합계획 수립을 위한 독서실태 조사 연구)

  • Min Sun Song;Inho Chang;Gum-Sook Hoang;Soo-Kyoung Kim
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.1
    • /
    • pp.285-308
    • /
    • 2023
  • This study was carried out to survey and analyze the actual state of reading in Goyang citizens, and to utilize it as a base data for Goyang City's 2nd 'Reading Culture Promotion Plan'. To do this, including references related to reading survey and the 2021 National Reading Survey questionnaire survey questions, the questionnaires that reflected characteristics of adult and student respondents constructed. Then, the survey of 960 adults and 540 students in Goyang City conducted and analyzed the results, and several useful suggestions deduced for 'Goyang City Reading Culture Promotion Plan'. First, the category of reading materials have to be expanded from the paper media to the various media. Second, the expandation of collections in libraries and the services that will help actually buy books are necessary. Third, various reading programs should develop, and the opportunities for citizens to participate in reading and club activities through online should also be increased. Fourth, the facilities and service environments for activating reading should ensure that the accessibility of everyday life. Finally, among the existing reading culture promotion projects, the 'smart libraries', 'Inter-library loan services', 'reading and cultural programs management', and 'Goyang Book Pay' projects need to be sustained and expanded. This study is significant in that it has investigated the actual reading situation of real citizens and has converged the opinions necessary for setting the direction of the effective 'Goyang City reading culture promotion plan'.

A Study on Human-Robot Interaction Trends Using BERTopic (BERTopic을 활용한 인간-로봇 상호작용 동향 연구)

  • Jeonghun Kim;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.185-209
    • /
    • 2023
  • With the advent of the 4th industrial revolution, various technologies have received much attention. Technologies related to the 4th industry include the Internet of Things (IoT), big data, artificial intelligence, virtual reality (VR), 3D printers, and robotics, and these technologies are often converged. In particular, the robotics field is combined with technologies such as big data, artificial intelligence, VR, and digital twins. Accordingly, much research using robotics is being conducted, which is applied to distribution, airports, hotels, restaurants, and transportation fields. In the given situation, research on human-robot interaction is attracting attention, but it has not yet reached the level of user satisfaction. However, research on robots capable of perfect communication is steadily being conducted, and it is expected that it will be able to replace human emotional labor. Therefore, it is necessary to discuss whether the current human-robot interaction technology can be applied to business. To this end, this study first examines the trend of human-robot interaction technology. Second, we compare LDA (Latent Dirichlet Allocation) topic modeling and BERTopic topic modeling methods. As a result, we found that the concept of human-robot interaction and basic interaction was discussed in the studies from 1992 to 2002. From 2003 to 2012, many studies on social expression were conducted, and studies related to judgment such as face detection and recognition were conducted. In the studies from 2013 to 2022, service topics such as elderly nursing, education, and autism treatment appeared, and research on social expression continued. However, it seems that it has not yet reached the level that can be applied to business. As a result of comparing LDA (Latent Dirichlet Allocation) topic modeling and the BERTopic topic modeling method, it was confirmed that BERTopic is a superior method to LDA.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.