DOI QR코드

DOI QR Code

Bio-Sensing Convergence Big Data Computing Architecture

바이오센싱 융합 빅데이터 컴퓨팅 아키텍처

  • Received : 2017.10.10
  • Accepted : 2017.10.27
  • Published : 2018.02.28

Abstract

Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.

생체정보 컴퓨팅은 생체신호 센서와 컴퓨터 정보처리를 융합한 정보시스템에 기초하여 컴퓨팅시스템 뿐만 아니라 빅데이터 시스템에 크게 영향을 미치고 있다. 이러한 생체정보는 지금까지의 텍스트, 이미지, 동영상 등의 전통적인 데이터 형식과는 달리 생체신호의 의미를 부여하는 값은 텍스트 기반으로 표현되고, 중요한 이벤트 순간은 이미지 형식으로 저장하며, 시계열 분석을 통한 데이터 변화 예측 및 분석을 위해서는 동영상 형식 등 비정형데이터를 포함하는 복합적인 데이터 형식을 구성한다. 이러한 복합적인 데이터 구성은 개별 생체정보 응용서비스에서 요구하는 데이터의 특징에 따라 텍스트, 이미지, 영상 형식 등으로 각각 분리되어 요청되거나, 상황에 따라 복잡 데이터 형식을 동시에 요구할 수 있다. 기존 생체정보 컴퓨팅 시스템들은 전통적인 컴퓨팅 구성요소, 컴퓨팅 구조, 데이터 처리 방법 등에 의존하므로 데이터 처리성능, 전송능력, 저장효율성, 시스템안전성 등의 측면에서 많은 비효율성을 내포하고 있다. 본 연구에서는 생체정보 처리 컴퓨팅을 효과적으로 지원하는 생체정보 빅데이터 플랫폼을 구축하기 위해 개선된 바이오센싱 융합 빅데이터 컴퓨팅 아키텍처를 제안한다. 제안 아키텍처는 생체신호관련 데이터의 저장 및 전송 효율성, 컴퓨팅 성능, 시스템 안정성 등을 효과적으로 지원하며, 향후 생체정보 컴퓨팅에 최적화된 시스템 구현 및 생체정보 서비스 구축을 위한 기반을 제공할 수 있다.

Keywords

References

  1. Wikipedia [Internet], https://ko.wikipedia.org/wiki/.
  2. M. K. Kim and H. J. Lee, "Wearable / implantable smart medical device," JKICS, Vol.33, No.6, pp.47-52, 2016.
  3. S. Y. Yang, K. Y. Sung, and S. G. Lim, "Research trends in medical skin patches," BT NEWS, The Korean Society For Biotechnology And Bioengineering, Vol.22, No.1, pp.62-68, 2015.
  4. www.daum.net [Internet], http://blog.daum.net/_blog/BlogTy peView.do?blogid=0JhIe&articleno=8766959.
  5. Y. H. Oh, J. S. Lee, and S. J Kang, "Protocol Design for Opportunistic Direct M2M Communication in Wearable Computing Environment," JKICS, Vol.39, No.2, pp.151-163, 2014.
  6. D. W. Lee and K. H. Kwon, "Analysis of Determinants of Labor Market Performance of Young College Students Using Data Mining Analysis Method," Korean Policy Academic Bulletin, Vol.25, No.3, pp.362-363, 2016.
  7. Y. G. Jumg, "Reature Reduction and Baysian Networks Learning for Medical Datamining," Proceeding of KISSE, Vol.31, No.1B, pp.595-597, 2004.
  8. S. Y. Han and Y. G. Jumg, "A Naive Baysian Learning of Clustering for Medical Data mining," Proceeding of KISSE, Vol.37, No.1C, pp.410-413, 2010.
  9. G. H. Park, "A Trends of Big Data Processing for Digital Healthcare," The Korea Contents Association Review, Vol.15, No.1, pp.35-37, 2017.
  10. S. S. Kim, M. C. Chung, T. W. Lee, and J. H. Won, "Implementation of Medical Data-Based Big Data Analytics Service," Proceeding of KISSE, pp.157-159, 2015.
  11. T. G. Lee, S. H. Lee, and H. Y. Kim, "Dynamic Configuration Method of Process Design in Bio-sensing Information Computing System," International Journal of Bio-Science and Bio-Technology, Vol.5, No.6, pp.147-156, 2013.
  12. T. G. Lee, "Chapter 15: Mobile Healthcare Computing in the Cloud," Mobile Networks and Cloud Computing Convergence for Progressive Services and Applications, IGI Global, pp.275-294, 2014. DOI: 10.4018/978-1-4666-47817.ch015
  13. T. G. Lee and S. H. Lee, "Dynamic stepping information process method in mobile bio-sensing computing environments," Technology and Health Care, IOS Press., 2014. DOI: 10.3233/THC-140795
  14. E. Merelli, G. Armano, N. Cannata, F. Corradini, M. d'Inverno, A. Doms, P. Lord, A. Martin, L. Milanesi, S. Mo«ller, M. Schroeder, and M. Luck, "Agents in bioinformatics, computational and systems biology," Briefings in Bioinformatics Advance Access, pp.1-15, 2006.
  15. B. Ozisikyilmaz, R. Narayanan, J. Zambreno, G. Memik, and A. Choudhary, "An Architectural Characterization Study of Data Mining and Bioinformatics Workloads," In Proceedings of the International Symposium on Workload Characterization, 2006.
  16. A. K. Atwa, A. S. Aboelenine, M. S. Mabrouk, and Y. M. Kadah, "A New Enterprise Scale Software System for the Analysis of the Biological Data: An Enterprise Lifeware," Proceedings of Cairo International Biomedical Engineering Conference, pp.1-4, 2006.
  17. S. Gonzalez, V. Robles, J. M. Pena, and E. Menasalvas, "Instantiation and adaptation of CRISP-DM to Bioinformatics computational processes," Allen Institute for Artificial Intelligence, 2011.
  18. M. Zakarya, I. U. Rahman, N. Dilawar, and R. Sadaf, "An Integrative Study on Bioinformatics Computing Concepts, Issues and Problems," International Journal of Computer Science Issues, Vol.8, Issues 6, No.1, pp.330-339, 2011.