• 제목/요약/키워드: Conventional combine

검색결과 204건 처리시간 0.022초

Risk analysis of offshore terminals in the Caspian Sea

  • Mokhtari, Kambiz;Amanee, Jamshid
    • Ocean Systems Engineering
    • /
    • 제9권3호
    • /
    • pp.261-285
    • /
    • 2019
  • Nowadays in offshore industry there are emerging hazards with vague property such as act of terrorism, act of war, unforeseen natural disasters such as tsunami, etc. Therefore industry professionals such as offshore energy insurers, safety engineers and risk managers in order to determine the failure rates and frequencies for the potential hazards where there is no data available, they need to use an appropriate method to overcome this difficulty. Furthermore in conventional risk based analysis models such as when using a fault tree analysis, hazards with vague properties are normally waived and ignored. In other word in previous situations only a traditional probability based fault tree analysis could be implemented. To overcome this shortcoming fuzzy set theory is applied to fault tree analysis to combine the known and unknown data in which the pre-combined result will be determined under a fuzzy environment. This has been fulfilled by integration of a generic bow-tie based risk analysis model into the risk assessment phase of the Risk Management (RM) cycles as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse one of the significant risk factors associated in offshore terminals. This process will eventually help the insurers and risk managers in marine and offshore industries to investigate the potential hazards more in detail if there is vagueness. For this purpose a case study of offshore terminal while coinciding with the nature of the Caspian Sea was decided to be examined.

3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구 (Structural Optimization of Additive/Subtractive Hybrid Machines)

  • 박준구;김은중;이춘만
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

On the Application of Channel Characteristic-Based Physical Layer Authentication in Industrial Wireless Networks

  • Wang, Qiuhua;Kang, Mingyang;Yuan, Lifeng;Wang, Yunlu;Miao, Gongxun;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2255-2281
    • /
    • 2021
  • Channel characteristic-based physical layer authentication is one potential identity authentication scheme in wireless communication, such as used in a fog computing environment. While existing channel characteristic-based physical layer authentication schemes may be efficient when deployed in the conventional wireless network environment, they may be less efficient and practical for the industrial wireless communication environment due to the varying requirements. We observe that this is a topic that is understudied, and therefore in this paper, we review the constructions and performance of several commonly used test statistics and analyze their performance in typical industrial wireless networks using simulation experiments. The findings from the simulations show a number of limitations in existing channel characteristic-based physical layer authentication schemes. Therefore, we believe that it is a good idea to combine machine learning and multiple test statistics for identity authentication in future industrial wireless network deployment. Four machine learning methods prove that the scheme significantly improves the authentication accuracy and solves the challenge of choosing a threshold.

RDNN: Rumor Detection Neural Network for Veracity Analysis in Social Media Text

  • SuthanthiraDevi, P;Karthika, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3868-3888
    • /
    • 2022
  • A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.

Incomplete Information Recognition Using Fuzzy Integrals Aggregation: With Application to Multiple Matchers for Image Verification

  • Kim, Seong H.;M. Kamel
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.28-31
    • /
    • 2003
  • In the present work, a main purpose is to propose a fuzzy integral-based aggregation framework to complementarily combine partial information due to lack of completeness. Based on Choquet integral (CI) viewed as monotone expectation, we take into account complementary, non-interactive, and substitutive aggregations of different sources of defective information. A CI-based system representing upper, conventional, and lower expectations is designed far handling three aggregation attitudes towards uncertain information. In particular, based on Choquet integrals for belief measure, probability measure, and plausibility measure, CI$\_$bi/-, CI$\_$pr/ and CI$\_$pl/-aggregator are constructed, respectively. To illustrate a validity of proposed aggregation framework, multiple matching systems are developed by combining three simple individual template-matching systems and tested under various image variations. Finally, compared to individual matchers as well as other traditional multiple matchers in terms of an accuracy rate, it is shown that a proposed CI-aggregator system, {CI$\_$bl/-aggregator, CI$\_$pl/-aggregator, Cl$\_$pl/-aggregator}, is likely to offer a potential framework for either enhancing completeness or for resolving conflict or for reducing uncertainty of partial information.

  • PDF

근골격 모델과 참조 모션을 이용한 이족보행 강화학습 (Reinforcement Learning of Bipedal Walking with Musculoskeletal Models and Reference Motions)

  • 전지웅;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제29권1호
    • /
    • pp.23-29
    • /
    • 2023
  • 본 논문은 강화학습을 통해 이족보행에 대한 모션 캡처를 통해 참조 모션의 데이터들을 기반으로 근골격 캐릭터의 시뮬레이션을 적은 비용으로 높은 품질의 결과를 얻을 방법을 소개한다. 우리는 참조 모션 데이터를 캐릭터 모델이 수행할 수 있게끔 재설정을 한 후, 강화학습을 통해 해당 모션을 학습하도록 훈련시킨다. 참조 모션 모방과 근육에 대한 최소한의 메타볼릭 에너지를 결합하여 원하는 방향으로 근골격 모델이 이족보행을 수행하게끔 학습한다. 이러한 방법으로 근골격 모델은 기존의 수동으로 설계된 컨트롤러보다 적은 비용으로 학습할 수 있으며 높은 품질의 이족보행을 수행할 수 있게 된다.

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.

롤 구동 래핑암 회전식 원형베일래퍼의 구동 토크 분석 (Driving Torque Analysis of Role Driving & Wrapping Arm Rotation Type Round Bale Wrapper)

  • 유병기;김혁주;오권영;최광재;이성현;박환중;김병관
    • 한국축산시설환경학회지
    • /
    • 제11권1호
    • /
    • pp.11-16
    • /
    • 2005
  • 1. 구획이 작고 논두렁이 많은 논의 볏짚 수집에 적합한 1축롤 구동 래핑암회전식 트랙터 3점히치 장착형 원형베일 래퍼를 개발하였다. 2. 2개의 구동롤을 구동하는 래핑암 회전식원형베일래퍼는 베일 적재시 베일에 변형이 발생하였으며 작업시 무게중심이 높아 기체 흔들림이 있었으나 시작기는 베일적재시 롤이 수평직선운동을 하여 베일의 변형이 적었으며 무게중심이 낮아 작업 안정성이 다소 높은 것으로 평가되었다. 3. 베일적재시에 두 개의 적재롤이 자유회전을 하여 적재시의 베일과 롤의 마찰저항을 구름저항으로 바꿈으로써 베일의 변형이 생기지 않았으며 베일을 회전시키기 위한 구동롤의 토크를 기존의 2축롤 구동식은 12 kgf-m 이었으나 새로 개발한 1축롤 구동식은 6 kgf-m로 낮았다. 4. 구동롤 토크가 낮아 1축롤 구동으로 베일래핑작업이 가능하였으며 기계구조를 단순화 킬 수 있었다. 5. 기존 회전테이블식에 비해 작업능률을 $45\%$ 향상, 작업비용은 $17\%$ 절감할 수 있었다.

  • PDF

SVC 기반의 위성방송 서비스를 위한 계층 분리형 PES 패킷화 및 처리 기법 (Layer-separable PES Packetization and Processing Scheme for SVC-based Satellite Broadcasting Service)

  • 지원섭;서광덕;김진수;이인기;장대익
    • 방송공학회논문지
    • /
    • 제14권5호
    • /
    • pp.561-572
    • /
    • 2009
  • 본 논문에서는 SVC 비디오를 기반으로 DVB-S2 위성 방송 서비스를 제공할 때 필요한 효율적인 비디오 계층 분리형 PES 패킷화 및 처리 기법을 제안한다. SVC 부호화 기법은 기존의 MPEG-2, MPEG-4, H.264등과 같은 단일 계층 기반의 부호화 기법과는 달리 다수의 비디오 계층을 하나로 통합하여 단일 비트스트림으로 생성한다. 따라서, 기존의 H.264 기반의 DVB-S2 위성방송 서비스와 달리 SVC 비디오를 적용할 경우 다중의 비디오 계층을 효율적으로 분리하여 처리할 수 있는 패킷화 메커니즘이 요구된다. 본 논문에서는 DVB-S2의 채널 부호화 기법인 LDPC(Low Density Parity Check) 와 SVC 부호화 기법이 결합적으로 적용되어 SVC 비디오의 계층 별로 차등화된 오류 보호 (UEP: unequal error protection)를 적용할 수 있도록 하기 위한 효율적인 PES 패킷화 및 처리 기법을 제안하고 계산량과 처리 지연시간 측면에서 제안된 기법의 효율성을 검증한다.

DTW와 퓨전기법을 이용한 비유사도 기반 분류법의 최적화 (On Optimizing Dissimilarity-Based Classifications Using a DTW and Fusion Strategies)

  • 김상운;김승환
    • 전자공학회논문지CI
    • /
    • 제47권2호
    • /
    • pp.21-28
    • /
    • 2010
  • 본 논문에서는 동적시간교정법(dynamic time warping: DTW)과 다중퓨전기법(multiple fusion strategy: MFS)을 연속 적용하여 비유사도기반 분류법(dissimilarity-based classification: DBC)을 최적화시키는 방법의 실험결과를 보고한다. DBC란 샘플패턴을 분류하기 위하여 샘플의 특징 값을 이용하는 대신에 샘플들 사이의 비유사도를 측정하여 분류기를 설계하는 방법이다. DTW에서는 다음과 같이 두 단계로 나누어 비유사도를 측정한다. 먼저 상관계수를 이용하여 객체 샘플들을 대응시키기 위한 최적의 대응경로를 찾을 수 있도록 샘플들을 조정한다. 그리고 기존의 거리측정법으로 조정된 샘플들 사이의 비유사도를 측정한다. MFS에서는 분류기결합 뿐만 아니라 비유사도 행렬생성에서도 퓨전기법을 적용한다. 즉, DTW 기법으로 작성한 다수의 비유사도 행렬들을 결합하여 새로운 비유사도 행렬을 생성한 다음, 이 행렬공간에서 여러 개의 베이스 분류기를 학습하여 다시 결합한다. 본 논문에서 제안한 방법을 벤취마크 영상 데이터베이스를 대상으로 실험한 결과, 기존의 방법과 비교하여 분류성능을 향상시킬 수 있음을 확인하였다. 이와 같은 실험결과로 볼 때, 제안 방법을 멀티미디어 정보검색 등과 같은 다른 고차원 응용에도 활용할 수 있을 것으로 사료된다.