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Abstract 
 

Channel characteristic-based physical layer authentication is one potential identity 
authentication scheme in wireless communication, such as used in a fog computing 
environment. While existing channel characteristic-based physical layer authentication 
schemes may be efficient when deployed in the conventional wireless network environment, 
they may be less efficient and practical for the industrial wireless communication 
environment due to the varying requirements. We observe that this is a topic that is 
understudied, and therefore in this paper, we review the constructions and performance of 
several commonly used test statistics and analyze their performance in typical industrial 
wireless networks using simulation experiments. The findings from the simulations show a 
number of limitations in existing channel characteristic-based physical layer authentication 
schemes. Therefore, we believe that it is a good idea to combine machine learning and 
multiple test statistics for identity authentication in future industrial wireless network 
deployment. Four machine learning methods prove that the scheme significantly improves 
the authentication accuracy and solves the challenge of choosing a threshold. 
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1. Introduction 

1.1 Physical Layer Authentication in Wireless Communication Systems 

As wireless communications are more widely deployed, for example, in applications such 
as military, finance, and healthcare, there is a need to ensure the security of such 
communications (e.g., data-in-transit). Generally, wireless network security is achieved 
through upper layer encryption and authentication mechanisms [1]. However, conventional 
encryption-based authentication mechanisms are resource-intensive and often incur high 
computational complexity and time delay. Such requirements contradict the nature of 
wireless networks (e.g., devices in the environment may be energy and resource-limited). 
Moreover, conventional upper layer authentication approaches do not adequately consider 
the vulnerabilities of wireless channels, making it vulnerable to attacks from the physical 
layer [2]. Therefore, conventional encryption-based authentication approaches may not be 
suitable for resource-constrained wireless network devices.  

This reinforces the importance of designing a new lightweight security authentication 
approach for resource-constrained wireless networks. During the design phase, it is 
important to understand the inherent characteristics of wireless channels and the various 
building blocks. For example, wireless channel characteristic-based physical layer 
authentication (PLA) uses the reciprocity and spatial uniqueness of wireless channels, and it 
realizes node identity authentication by comparing the similarity of wireless channel 
characteristics in a coherent time [3-5]. PLA only involves lightweight hardware operations 
and does not require complex upper-layer encryption and decryption operations. Therefore, 
due to advantages such as low computational complexity, small communication overhead, 
minimal time delay, low power consumption, PLA can potentially facilitate real-time 
authentication of wireless network terminals with limited resources. 

PLA is based on the Jakes uniform scattering model [6], which states that the received 
signal will decorrelate rapidly when the spatial separation between two different entities is 
greater than half of the transmission wavelength. Hence, when the distance between the 
attacker and the legitimate transmitter is greater than one or two transmission wavelengths, 
the legitimate wireless channel will experience a completely independent fading path. In 
addition, the attacker cannot predict or fabricate the random declines in advance, and the 
wireless channel response reflects the fading characteristic of the wireless channel. Therefore, 
the PLA can be converted to distinguish the legitimate path channel response from the 
illegitimate path channel response. 

PLA generally distinguishes between the legitimate and illegitimate paths based on 
channel detection and hypothesis test [7-15]. The key of the approach is to calculate the 
difference between the current channel response and the channel response of the 
authenticated legitimate path through certain test statistics. By comparing the difference with 
a preset threshold, one can determine whether the current message is from an attacker (i.e., 
the difference is greater than the threshold) or is from the expected legitimate transmitter (i.e., 
the difference is less than the threshold).  

At present, PLA technology based on hypothesis testing can be divided into two 
categories: one is authentication schemes based on channel characteristics, and the other is 
authentication schemes based on radio frequency fingerprints. The channel characteristics-
based PLA scheme verifies an unknown transmitter's identity by comparing the current 
channel state information with the legal channel state information [16-29]. This work mainly 
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focuses on the extraction of channel characteristics, and through these channel characteristics 
to improve the authentication accuracy. The PLA scheme based on the radio frequency 
fingerprint identifies the user according to the unique features of the user's waveform [30-34]. 
In addition to the above two authentication schemes, some other authentication schemes 
have been proposed, such as watermark/fingerprint embedding [35-37], multiple attributes 
and multiple observation (MAMO) technology [38], etc. In this paper, we mainly study the 
channel-based authentication scheme, which will be introduced in detail in the next chapter. 

1.2 The Significance of PLA in Industrial Wireless Networks 

Wireless industrial networks are very important to industrial automation. However, industrial 
wireless networks are vulnerable to attacks. Security is very important in industrial control 
systems. If attackers send malicious commands to the control device, it may cause serious 
consequences. The existing schemes all rely on cryptography mechanisms to solve this 
problem, such as symmetric keys and asymmetric keys. However, the schemes based on 
symmetric key technology have their own deficiencies that cannot be overcome, such as the 
assumption of security time limit [49], the fact that they are physical neighbors and the link 
is reliable cannot establish a direct secure link [50], a small number of captured nodes will 
expose part of the pairwise key, and a proper number of captured nodes may expose the 
entire key pool [51]. These security deficiencies may be ignored for applications with low-
security requirements, but industrial control systems with high-security requirements need to 
introduce asymmetric key mechanisms to compensate, such as public-key mechanisms. 
However, the computational strength required by public key cryptosystems is usually 
hundreds to thousands of times that of symmetric cryptosystems. Most public-key 
mechanisms have longer keys and larger encrypted blocks, and there is additional certificate 
overhead when using the certificate mechanism. The calculation, storage, communication, 
energy, and other expenses caused by these factors are often not borne by wireless terminals 
with limited resources. Moreover, in the clone attack or Sybil attack, since the ID and key 
information of the legitimate node are counterfeited by the clone node and the Sybil node, 
the clone node and the Sybil node cannot be detected by the cryptographic-based 
authentication mechanism.  

Since wireless channel features are space-time unique and unforgeable, the channel 
characteristics-based PLA technology is a good scheme to solve the above problems. 
However, most existing channel characteristics-based PLA schemes are deployed or 
evaluated in traditional wireless network environments (e.g., offices and laboratories) rather 
than industrial wireless networks. A typical industrial environment may involve scenarios 
characterized by high temperature, rotating parts, etc. [39,40]. Therefore, in these scenarios, 
the channel characteristics (e.g., channel gain and multipath effects) may differ significantly 
from the conventional wireless network environment. This is the gap this paper seeks to 
address. Specifically, we will study the applicability of existing channel characteristics-based 
PLA schemes in industrial wireless networks. 

1.3 Our Contributions 
The main contributions of this paper are as follows: 
1) We discuss some commonly used schemes for calculating channel characteristic 

differences and analyze their advantages and limitations. 
2) We regard PLA as a binary classification problem, then use machine learning 

classification algorithms for learning, and finally use the trained model for identity 
authentication. This training helps the receiver to understand channel variations and 
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makes authentication a threshold-free binary classification problem. 
3) Extensive simulation verification has been carried out on the real industrial data set, and 

field verification has been carried out in the real factory, which provides important value 
for the application of PLA in industrial physics in the future. 

1.4 Organization of the Paper 
The remainder of this paper is organized as follows. In Section 2, we identify and discuss 

several commonly used test statistics construction methods, which are used to calculate the 
channel characteristic differences, and analyze their advantages and limitations. In Section 3, 
we evaluate the performance of test statistics through simulation experiments in industrial 
wireless networks. In Section 4, we evaluated the performance of machine learning schemes 
in industrial wireless networks. In Section 5, we summarize the paper. 

2. The Channel Characteristics-Based PLA Scheme 

2.1 The Channel Characteristic-based PLA Model 
At present, channel characteristics-based PLA is implemented using hypothesis testing. We 
briefly describe the process through a simple tripartite model. As shown in Fig. 1, Alice is the 
legitimate sender, Bob is the legitimate receiver, and Eve is the attacker. Alice, Bob, and Eve 
are at different locations, and the distance between them is greater than half a wavelength. 
Suppose that Bob has verified the kth data frame from Alice. 𝐻𝐻�𝑘𝑘𝐴𝐴𝐴𝐴is the channel characteristic 
of the kth data frame. The transmitter of the k+1st data frame is unknown, and its channel 
characteristic is 𝐻𝐻�𝑘𝑘+1𝑋𝑋𝐴𝐴 . T is the channel characteristic difference between 𝐻𝐻�𝑘𝑘𝐴𝐴𝐴𝐴 and 𝐻𝐻�𝑘𝑘+1𝑋𝑋𝐴𝐴 , then: 

 1
ˆ ˆT= ( ).AB AB

k kdiff H H +−  (1) 

The function 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(A − B) is used to calculate the difference between variables A and B. 

Alice
 Bob

Eve
 

Fig. 1. A typical three-party communication model. 
 

T is used as a test statistic in the hypothesis verification problem, which can be expressed 
mathematically as: 

 0
1

T .η≤
>

  (2) 

In the above equation, 𝜂𝜂 is a preset threshold. The null hypothesis ℋ0 indicates that the 
k+1st data frame is from Alice, while the alternative hypothesis ℋ1 indicates that the k+1st 
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data frame comes from Eve. It can be seen from (2) that the key to hypothesis test-based PLA 
is to compare the channel characteristic difference with a preset threshold. Therefore, 
calculating the channel characteristic difference and determining the preset threshold is very 
important to PLA. Next, we will analyze several commonly used statistical schemes，which 
are used to calculate channel differences. 

2.2 Commonly Used Channel Characteristics-Based PLA Schemes 
In this section, we sort out several commonly used the channel characteristics construction 
schemes, and analyze their advantages and disadvantages.  

2.2.1 The amplitude-based test statistic 𝑻𝑻𝑨𝑨 
In the OFDM communication system, He et al. found that differences between the sub-channel 
amplitudes can be used for identity authentication [7]. The channel response includes 
amplitude and phase offset. The channel responses of two consecutive data frames are 𝐻𝐻�𝑘𝑘𝐴𝐴𝐴𝐴 
and 𝐻𝐻�𝑘𝑘+1𝐴𝐴𝐴𝐴 , respectively. In the OFDM system, the amplitude and phase of the channel response 
between different sub-channels are different. The phase offset vector 𝜑𝜑(𝑙𝑙) of each sub-channel 
l is: 

 ( ) ( ) ( )( )1
ˆ ˆ• .AB AB

k kl arg H l H lϕ
∗

+
 =    (3) 

[A]* represents the complex conjugate of complex A. 𝑎𝑎𝑎𝑎𝑎𝑎 (𝐴𝐴)  is the argument of A. 𝐻𝐻�𝑘𝑘𝐴𝐴𝐴𝐴(𝑙𝑙) 
represents the channel characteristics of the 𝑙𝑙th sub-channel. The amplitude-based test 
statistic T𝐴𝐴 is: 

 ( ) ( ) ( )
12

1

1 ˆ ˆT .
L

j lXB AB
A k k

l
H l H l e ϕ

σ +
=

= −∑  (4) 

In the above equation, 𝜎𝜎2  denotes the noise power. Since 𝜎𝜎2  is usually unknown, it is 
challenging to calculate the test statistic T𝐴𝐴. Besides, T𝐴𝐴 presents an irregular distribution, so it 
is challenging to determine the threshold accurately. Hence, the test statistic T𝐴𝐴 cannot be used 
for authentication. 

2.2.2 The phase-based test statistic 𝑻𝑻𝑩𝑩 
Because different noises interfere with the signals of different sampling channels, the phase 
offset will also be different. He et al. made full use of the phase offset to identify the channel, 
thereby achieving identity authentication [7]. The phase-based test statistic T𝐴𝐴 is: 

 ( ) 2

2
1

1T .
L

B
l

lϕ
π =

= ∑  (5) 

Since the test statistic  T𝐴𝐴  obeys the Gaussian distribution, its threshold can be easily 
determined. As the calculation of T𝐴𝐴  does not involve the unknown variable 𝜎𝜎2 , the test 
statistic T𝐴𝐴 can be accurately calculated. 

2.2.3 The test statistic based on the combined amplitude and phase 𝑻𝑻𝑪𝑪 
The test statistic T𝐴𝐴 eliminates the effect of phase offset, it only uses the sub-channel amplitude 
to obtain the channel difference. The test statistic T𝐴𝐴 only uses the sub-channel phase to get the 
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channel difference. Both amplitude and phase can be used to construct the test statistic. He et al. 
constructed the test statistic based on the combined amplitude and phase [7], denoted as T𝐶𝐶: 

 
2

12
1

1 ˆ ˆT .( ) ( )
L

AB XB
C k k

l
H Hl l

σ +
=

= −∑  (6) 

Compared with the test statistic T𝐴𝐴, the test statistic T𝐶𝐶 does not eliminate the influence of 
phase offset, so it is affected by phase and amplitude. Besides, the test statisticT𝐶𝐶 presents chi-
square distribution, so its threshold can be calculated under a certain false alarm probability. 
However, like the test statistic T𝐴𝐴, it is difficult to calculate its value accurately because of the 
unknown noise power 𝜎𝜎2. Therefore, the test statistic T𝐶𝐶 is not practical, too. 

2.2.4 The test statistic based on corrected phase offset 𝑻𝑻𝑫𝑫 
Considering the effects of noise and phase offset, Xiao et al. constructed the test statistic T𝐷𝐷 
based on the corrected phase offset [4]. Since the test statisticT𝐷𝐷 needs to correct the phase 
offset effect, the phase offset 𝜑𝜑 should be minimized and written as 𝜑𝜑∗: 

 ( ) ( )1
1

ˆ ˆ• .
L

AB XB
k k

l
arg H l H lϕ

∗∗
+

=

  =    
∑  (7) 

The test statistic T𝐷𝐷 is: 

 ( ) ( )
2
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1
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L
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=
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The test statistic T𝐷𝐷  obeys the chi-square distribution, so its threshold can be easily 
determined. However, like the test statistic T𝐴𝐴  and the test statistic T𝐶𝐶 , it is challenging to 
calculate the test statistic T𝐷𝐷 accurately because of the unknown noise power 𝜎𝜎2. Therefore, it 
is an urgent need to normalize method to eliminate the influence of 𝜎𝜎2. 

2.2.5 The test statistic based on the normalized likelihood ratio test 𝑻𝑻𝑳𝑳𝑳𝑳𝑻𝑻 
Based on [4], Xiao et al. proposed a PLA scheme based on the normalized likelihood ratio test 
(LRT) [8], which eliminated the influence of noise power 𝜎𝜎2  by using the normalization 
method. The new test statistic T𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿 is: 
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By performing the same process to the test statistic T𝐴𝐴  and the test statistic T𝐶𝐶 ,the test 
statistic T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 and the test statisticT𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 can be obtained as follows: 
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Obviously, through the normalization method, the test statistic T𝐿𝐿𝐿𝐿𝐿𝐿 eliminates the noise 
power 𝜎𝜎2. However, due to the normalization process, the test statistic T𝐿𝐿𝐿𝐿𝐿𝐿 no longer obeys 
the chi-square distribution. So, it will be difficult to determine the threshold, and it is necessary 
to traverse the test statistic T𝐿𝐿𝐿𝐿𝐿𝐿 to find its optimal threshold.  

In [10], the test statistic T𝐿𝐿𝐿𝐿𝐿𝐿 was improved on the basis of [8], and a new scheme was 
constructed, which used the channel responses of three consecutive data frames to calculate the 
channel characteristic difference. The new normalized test statistic T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 is: 

 
( ) ( )

( ) ( )

1
1

1
1

ˆ ˆ
T 1 ,

ˆ ˆ

L
XB AB j
k k

ILRT l
A L

AB AB j
k k

l

H l H l e

H l H l e

ϕ

ϕ

+
=

−
=

−
= −

−

∑

∑
 (12) 

 
( ) ( )

( ) ( )

2

1
1

2

1
1

ˆ ˆ
T 1 ,

ˆ ˆ

L
XB AB
k k

ILRT l
C L

AB AB
k k

l

H l H l

H l H l

+
=

−
=

−
= −

−

∑

∑
 (13) 

 
( ) ( )

( ) ( )

2

1
1

2

1
1

ˆ ˆ
T 1 .

ˆ ˆ

L
XB AB j
k k

ILRT l
D L

AB AB j
k k

l

H l H l e

H l H l e

ϕ

ϕ

∗

∗

+
=

−
=

−
= −

−

∑

∑
 (14) 

The test statistic T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 needs to successfully verify the previous two data frames before it 
can be used, and the threshold range will also be reduced. Compared with the test statisticT𝐿𝐿𝐿𝐿𝐿𝐿, 
the selection of its optimal threshold is faster. The test statistic T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 eliminates the unknown 
parameter 𝜎𝜎2, and its threshold is easy to be determined. Therefore, the test statistic T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 has 
high practicality. 

2.2.6 The test statistic based on sequential probability ratio test 𝑻𝑻𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻 
Inspired by [8], Wen et al. proposed the test statistic based on the sequential probability ratio 
test (SPRT) [9]. The test statisticT𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 uses the channel responses of previous s authenticated 
data frames to identity the kth data frame. The test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  is more conducive to 
calculating the threshold and improving the detection rate to a certain extent. The expression of 
the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is: 
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Compared with the test statistic T𝐿𝐿𝐿𝐿𝐿𝐿, the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 treats the channel responses of 
consecutive frames as the statistic test. Therefore, the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is better and more 
practical than the test statistic T𝐿𝐿𝐿𝐿𝐿𝐿. However, with the increase of s, the system load will 
increase accordingly. Thus, s should not be too large. 

In [10], the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿was improved. It compares the channel response of the kth 
data frame with that of the previous s data frames and takes the average value of the obtained s 
differences as the improved test statistic T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿of the kth data frame. The threshold η of the 
test statistic T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 becomes smaller, so it is easier to obtain the optimal threshold through 
traversal. The test statistic T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is: 
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The test statistic T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  requires at least two authenticated data frames, and the 
computational complexity will increase with the increase of s. Therefore, the computational 
complexity of the test statistic T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is slightly higher than that of the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. 

3. Statistics Schemes Simulation and Performance Analysis 

3.1 Simulation data and sites 
In this paper, we use the CSI data sets provided by the National Institute of Standards and 
Technology (NIST) [41]. The NIST uses the channel impulse response measured in four 
typical industrial sites as CSI. The four typical industrial sites are the steamer plant, the Open 
Area Test Site (OATS), the automotive factory and the machine shop. The transmitting device 
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remains stationary at all times, and the central transmission frequency of the Omni-antennas is 
2.25 GHz. Each site includes multiple collections. Multiple collections are obtained in each 
experiment, and each collection includes multiple records. In this paper, since the 
authentication of the spoofing attack is considered, we simulated two different entities, namely 
a legitimate transmitter and an attacker. In the simulation experiments, the simulated legitimate 
transmitter corresponds to the actual receiving device, and the simulated receiver corresponds 
to the actual transmitting device. However, since the wireless channel is reciprocal, the results 
will not be affected.  

3.1.1 The automotive factory 
The automotive factory is a 400m × 400m × 12m indoor environment. In this site, tall metal 
machines are everywhere. This site includes two data collection paths: the inner loop and the 
outer loop. In the outer loop, the receiving device collects data at 135 locations, and each 
collection contains 300 records. In the simulation experiments, the data collected at the 68th 
location is set as legitimate data, as shown in Fig. 2. In the inner loop, the receiving device 
collects data at 103 locations, and each collection contains 300 records. In the simulation 
experiments, the data collected at the 52nd location is set as legitimate data, as shown in Fig. 
3. 
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Fig. 2. Date collection locations in the automotive factory (outer loop). 
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Fig. 3. Date collection locations in the automotive factory (inner loop). 

 
 
 



2264                                             Wang et al.: On the Application of Channel Characteristic-Based Physical Layer  
Authentication in Industrial Wireless Networks 

3.1.2 The machine shop 
The machine shop is a 12m × 50m × 7.6m indoor environment. In this site, metal machines 
are everywhere, and they reflect radio waves and increase the multipath effects. In this 
scenario, the receiving device collects data at 210 locations, and each collection contains 50 
records. In the simulation experiments, the data collected at the 106th location is set as 
legitimate data, as shown in Fig. 4. 
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Fig. 4. Date collection locations in the machine shop. 

3.1.3 The steamer plant 
The steamer plant is a 50m × 80m × 7.6m factory with large machinery and elevated obstacles. 
In this scenario, the receiving device collects data at 665 locations, and each collection contains 
40 records. In the simulation experiments, the data collected at the 333rd location is set as 
legitimate data, as shown in Fig. 5. 
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Fig. 5. Date collection locations in the Steamer plant. 

3.1.4 The OATS 
The OATS is an open area with fewer interference sources. The receiving device collects data 
at 410 locations, and each collection contains 40 records. In the simulation experiments, the 
data collected at the 206th location is set as legitimate data, as shown in Fig. 6. 
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3.2 Measurement of Scheme Performance 
In this section, we use NIST data to calculate channel differences and verify the performance 
of the test statistics introduced in section 3 in industrial wireless networks. As the noise power 
𝜎𝜎2 is unknown, T𝐴𝐴, T𝐴𝐴  and T𝐷𝐷 will not be tested in this paper. For test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 and 
T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, s = 3.  

The receiver operating characteristic (ROC) curve, including the detection rate dr and the 
false alarm rate far, is used to represent the performance of the test statistic scheme. The ROC 
curve can clearly show the change of the dr and the far with the threshold, so the optimal 
threshold value can be determined well. Through ROC curve, the performance of each scheme 
can be well compared. The dr indicates the probability of detecting an attacker, and far 
indicates the probability of misidentifying a legitimate transmitter as an attacker. dr and far are 
computed by (21) and (22), where 𝑃𝑃𝑎𝑎(∙ | ∙) represents the conditional probability. 

 ( )1 1| ,dr Pr=    (21) 

 ( )1 0| .far Pr=    (22) 

3.3 Simulation results and analysis 

3.3.1 Performance in the machine shop 
Fig. 7 shows the performances of various test statistics in the machine shop. It can be seen that 
in this site, the performance of the test statistic T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is better than that of other test statistics. 
When the far of the test statistic T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is 4.938%, its dr reaches 99.52%. For the test statistic 
T𝐿𝐿𝐿𝐿𝐿𝐿, T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿. For the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐷𝐷𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐶𝐶 

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. For the two 
test statistics, the performance of the amplitude-based test statistic is better than that of the test 
statistic based on the combined amplitude and phase and the test statistic based on the 
corrected phase offset. At the same time, for the test statisticT𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For 
the test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 ,T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐴𝐴𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 . Therefore, the performance of the test 
statistic based on the combined amplitude and phase is better than that of the amplitude-based 
test statistic and the test statistic based on the corrected phase offset. For example, when the far 
is 4.812%, the dr of the test statistic T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿is 80.57%, while the dr of the test statistic T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿is 
only 48.85%, and when the dr of the test statisticT𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 reaches 80.57%, its far reaches 17.54%. 
When the far is 5.135%, the dr of the test statistic T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is 83.94%, while the dr of the test 
statistic T𝐷𝐷𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is only 35.68%. However, the performance of the test statistics T𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿and the 
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test statistic T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 in the amplitude-based test statistic drop significantly. For example, when 
the far is 4.938%, the dr of the test statistic T𝐴𝐴𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 reaches 99.52%, while the dr of the test 
statistic T𝐴𝐴𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is only 42.40%. 
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Fig. 7. Performance in the machine shop. 

3.3.2 Performance in the steamer plant 
As shown in Fig. 8, in the steamer plant, the test statistics T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿, T𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿, T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿, T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿, T𝐴𝐴𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, 
T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, and T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 all have excellent performance. For example, when the far is 0.2062%, the 
dr of the test statistic T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿can reach 99.85%. The reason is that there are fewer machines in 
this scenario, and the signals do not experience much reflection, which reduces the multipath 
effect. Therefore, these test statistics perform better in this scenario. For the amplitude-based 
test statistic, T𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐴𝐴 

𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 . For the test statistic based on the combined 
amplitude and phase, T𝐶𝐶 

𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐶𝐶𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 . For the test statistic based on the 
corrected phase offset, T𝐷𝐷 

𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. According to the comparisons, in the 
steamer plant, the detection performance of the test statistic T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿is better than that of the test 
statistic T𝐿𝐿𝐿𝐿𝐿𝐿, and the detection performance of the test statistic T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is better than that of 
T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. For example, when the far is 0.4511%, the dr of the test statistic T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 is 99.85%, while 
the dr of the test statistic T𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿 is only 56.89%. When the far is 1.336%, the dr of the test 
statistic T𝐴𝐴 

𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  reaches 99.81%, while the dr of the test statistic T𝐴𝐴 
𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  is only 89.08%. 

Moreover, the performance of the test statistic T𝐿𝐿𝐿𝐿𝐿𝐿 is better than that of the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. 
For example, when the far is 1.713%, the dr of the test statistic T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 reaches 97.60%, while the 
dr of the test statistic T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is only 89.82%. 
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Fig. 8. Performance in the steamer plant. 
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3.3.3 Performance in the automotive factory 
Fig. 9 and Fig. 10 show the performance of test statistics in the automotive factory. As shown 
in Fig. 9, the performance of the test statistic T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is the best in the outer loop. When the far 
of the test statistic T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  is 4.722%, its dr can reach 96.53%. In this scenario, for the 
amplitude-based test statistic, T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐴𝐴 

𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐴𝐴𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For the test statistic based on 
the combined amplitude and phase, T𝐶𝐶 

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 . For the test statistic 
based on the corrected phase, T𝐷𝐷 

𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. From the above comparisons, 
we can see that the performance of the test statistic T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 is worse than that of the test statistic 
T𝐿𝐿𝐿𝐿𝐿𝐿. For example, when the far is 4.831%, the dr of the test statistic T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 is 33.98%, while 
the dr of the test statistic T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 is only 18.90%. The same is true for the test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 
and the test statisticsT𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. The detection performance of the test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 decreased 
compared with the test statistics T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. For example, when the far is 4.722%, the dr of the test 
statisticT𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 can reach 96.53%, while the dr of the test statistic T𝐴𝐴𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is only 24.30%. 
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Fig. 9. Performance in the automotive factory (outer loop). 
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Fig. 10. Performance in the automotive factory (inner loop). 
 

In the inner loop, as shown in Fig. 10, the test statistic T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 has the best performance in 
this scenario, and its dr reaches 99.03% when the far is 0.2001%. In the scenario, for the 
amplitude-based test statistic, T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐴𝐴 

𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐴𝐴𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For the test statistic based 
on the combined amplitude and phase, T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐶𝐶𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For the test statistic 
based on the corrected phase offset, T𝐷𝐷 

𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 > T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 > T𝐷𝐷𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. And the performance 
of the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿 is better than that of the test statistics T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For example, when the 
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far is 3.172%, the dr of the test statistic T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿  reaches 84.56%, while the dr of the test 
statistic T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 is only 53.34%. 

Compare the inner loop with the outer loop in the automotive factory, the performance of 
test statistics in the inner loop scenario is slightly better than that in the outer loop scenario, 
because there are fewer interference sources in the inner loop. 

3.3.4 Performance in the OATS 
As shown in Fig. 11, in the OATS scenario, except for the test statistic T𝐴𝐴, other test statistics 
all have better performance. The wireless network environment of the OATS is similar to the 
traditional wireless network environment with fewer interference sources and multipath 
components, so the existing test statistics perform well in OATS. 
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Fig. 11. Performance in the OATS. 
 

From the above analysis, we can see that compared with other test statistics, the test statistic 
T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 performs better in the industrial wireless network environment. It can be applied to the 
machine shop, the automotive factory, and the OATS. However, its performance in the steamer 
plant scene is slightly worse, and the highest dr can only reach 89% when far is 12%. 
Therefore, existing test statistics cannot be fully applied to various industrial wireless network 
environments. Moreover, existing test statistics need to traverse to determine the optimal 
threshold. 

4. Machine learning Schemes Simulation and Performance Analysis 
The channel characteristic-based PLA schemes rely on a preset threshold to achieve an 
detection rate or false alarm rate for a given system and wireless environment. Therefore, the 
choice of threshold has a significant impact on system performance. Besides, since the 
threshold depends on some factors, such as the channel statistics, the channel estimation 
error, terminal mobility, and the physical environment in which the device is located, the 
selection of the threshold is challenging.  

The channel characteristic-based PLA can be regarded as a binary classification problem, 
and machine learning is an excellent method to deal with the binary classification problem. 
Therefore, the classification algorithm in machine learning can solve the challenge of threshold 
selection. Some scholars used machine learning to classify channel characteristics [42-47] and 
achieved good results. However, in these schemes, the authors only analyzed the applicability 
in the traditional wireless network environment, and they did not analyze the applicability in 
the industrial wireless network environment. Moreover, these machine learning schemes 
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directly process the channel characteristic data, which may significantly burden wireless 
network terminals with limited resources due to a large amount of data. The test statistic 
schemes are performed on the hardware, so they have low complexity and low time delay, 
which can reduce the burden of the wireless terminal. Therefore, the combination of machine 
learning and test statistics can solve the problem of threshold selection, improve the 
authentication accuracy, and reduce complexity. 

Literature [48] uses the combination of machine learning and statistics scheme to achieve 
good results in plant. In this section, we will test the effect of the combination of machine 
learning and statistics schemes in other scenarios. 

4.1 Performance Metrics 
A good authentication system can perfectly distinguish legal and illegal messages. Therefore, 
we use the authentication accuracy as the standard to measure each scheme in this section. 
The authentication accuracy can be expressed as: 

 ( )1 1| | .AC Pr=        (23) 

Where 𝑃𝑃𝑎𝑎(∙ | ∙) represents the conditional probability. 

4.2 Machine Learning Methods 
After processing the test statistics, the NIST data set becomes a two-dimensional dataset. 
And the dataset has the characteristics of single feature and small magnitude. According to 
the characteristics of the dataset, we choose four machine learning classification algorithms, 
namely Gradient Boosted Decision Tree (GBDT), K-Nearest Neighbor (KNN), Support 
Vector Machines (SVM), and Logistic Regression (LR), which are good at solving 
classification problems. 

4.2.1 Gradient Boosted Decision Tree (GBDT) 
GBDT is a decision tree algorithm with high prediction accuracy, suitable for low-
dimensional data, and can handle non-linear data. GBDT can flexibly handle various types of 
data, including continuous and discrete values. In the case of relatively short tuning time for 
GBDT, the predicted readiness rate can also be relatively high. GBDT consists of multiple 
decision trees, and the conclusions of all trees are added together to make the final answer. 
GBDT has two functions: the exponential loss function, the other is the logarithmic 
likelihood loss function. The latter is adopted in this paper. 

4.2.2 Logistic Regression (LR) 
Although LR is called regression, it is a classification model and is often used for two 
classifications. The computational cost of LR algorithm is not high, and it is easy to understand 
and implement. LR is very efficient in terms of time and memory requirements. It can be 
applied to distributed data, and it also has online algorithm implementation, which uses less 
resources to process large data. LR is very robust to small noise in the data, and will not be 
particularly affected by slight multicollinearity. The essence of LR is to assume that the data 
obey this distribution, and then use maximum likelihood estimation to estimate the parameters. 
Logistic regression has two classification methods: one-vs-rest and many-vs-many. The former 
is adopted in this paper. 
 



2270                                             Wang et al.: On the Application of Channel Characteristic-Based Physical Layer  
Authentication in Industrial Wireless Networks 

4.2.3 K-Nearest Neighbor (KNN) 
KNN is a theoretically mature method and one of the simplest machine learning algorithms. 
KNN does not show training, unlike other supervised algorithms that use the training set to 
train a model (that is, fit a function), and then use it to classify the validation set or test set. It 
just saves the samples and processes them when the test data is received, so the KNN 
training time is zero. The idea of this method is very simple and intuitive. If most of the K 
similar samples belong to a category in the eigenspace, then the sample also belongs to that 
category. This method only determines the category of the sample to be divided according to 
the category of the nearest one or several samples. 

4.2.4 Support Vector Machines (SVM) 
SVM is a two-classification model. It has good performance on small samples, nonlinearity, 
high dimensionality and local minima. Its basic model is a linear classifier with the largest 
interval defined in the feature space. However, SVM has kernel skills, which make it a 
substantial non-linear classifier. The learning strategy of SVM is interval maximization, 
which can be formalized as a problem to solve convex quadratic programming. The learning 
algorithm of SVM is the optimal algorithm for solving convex quadratic programming. SVM 
kernel functions include Linear kernel function, Polynomial kernel function, Radial Basis 
kernel function, Gaussian kernel function. The Gaussian kernel function is adopted in this 
paper. 

4.3 Simulation Results and Analysis 

4.3.1 Performance in the machine shop 
Fig. 12 shows the performance of the four machine learning methods in the machine shop 
scenario. In the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿, as shown in Figure (a), the GBDT+ T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 scheme has the 
best performance, and its authentication accuracy rate can reach 95.81%. The four machine 
learning methods have a good improvement for the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿. For example, the 
authentication accuracy of the test statistic T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 is 85.09%, while the authentication accuracy 
of the GBDT+T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 scheme increases by 9.18%, and its authentication accuracy can reach 
94.28%. In the test statistics T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿, as shown in Figure (b), the GBDT+ T𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 scheme has 
the best performance, and its authentication accuracy can reach 96.16%. The four machine 
learning methods have a good improvement for the test statistics T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For example, the 
authentication accuracy of the test statistic T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿  is 87.81%, while the authentication 
accuracy of the GBDT +T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 scheme has increased by 6.05%, and its authentication 
accuracy can reach 93.86%. In the test statistics T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 , as shown in Figure (c), the 
SVM+ T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  scheme has the best performance, and its authentication accuracy rate can 
reach 99.87%. The four machine learning methods have a good improvement for the test 
statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 . For example, the authentication accuracy of the test statistics T𝐷𝐷𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  is 
72.51%, while the authentication accuracy of the GBDT +T𝐷𝐷𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  scheme increases by 
25.01%, and its authentication accuracy can reach 97.52%. In the test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, as 
shown in Figure (d), the GBDT + T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  scheme has the best performance, and its 
authentication accuracy rate can reach 95.50%. The four machine learning methods have a 
good improvement for the test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. For example, the authentication accuracy of 
the test statistic T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is 89.29%, while the authentication accuracy of the GBDT+T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 
scheme increases by 6.19%, and its authentication accuracy can reach 95.48%. From the 
above analysis, it can be seen that in the machine shop scenario, the machine learning 
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improves the authentication accuracy of the test statistics schemes and solves the challenge 
of threshold selection. 
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Fig. 12. Authentication accuracy in the machine shop. 

4.3.2 Performance in the steamer plant 
Fig. 13 shows the performance of the four machine learning methods in the steamer plant 
scenario. In the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿, as shown in Figure (a), the GBDT+ T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 scheme has the 
best performance, and its authentication accuracy can reach 99.99%. The four machine 
learning methods have a good improvement for the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿. For example, the 
authentication accuracy of the test statistic T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 is 68.96%, while the authentication accuracy 
of the GBDT+T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿 scheme increases by 31.02%, and its authentication accuracy can reach 
99.98%. In the test statistics 𝐓𝐓𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻, as shown in Figure (b), the GBDT+ 𝐓𝐓𝑨𝑨𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻 scheme has 
the best performance, and its authentication accuracy can reach 99.89%. The four machine 
learning methods have a good improvement for the test statistics 𝐓𝐓𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻. For example, the 
authentication accuracy of the test statistic 𝐓𝐓𝑪𝑪𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻  is 57.85%, while the authentication 
accuracy of the GBDT+𝐓𝐓𝑪𝑪𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻scheme increases by 41.97%, and its authentication accuracy 
can reach 99.82%. In the test statistics 𝐓𝐓𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻, as shown in Figure (c), the GBDT+ 𝐓𝐓𝑫𝑫𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻 
scheme has the best performance, and its authentication accuracy can reach 99.98%. The 
four machine learning methods have a good improvement for the test statistics 𝐓𝐓𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻. For 
example, the authentication accuracy of the test statistic 𝐓𝐓𝑪𝑪𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  is 69.72%, while the 
authentication accuracy of the GBDT +𝐓𝐓𝑪𝑪𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  scheme increases by 30.23%, and its 
authentication accuracy can reach 99.95%. In the test statistics 𝐓𝐓𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻, as shown in Figure 
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(d), the SVM+ 𝐓𝐓𝑪𝑪𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻 scheme has the best performance, and its authentication accuracy can 
reach 99.99%. The four machine learning methods have a good improvement for the test 
statistics 𝐓𝐓𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻 . For example, the authentication accuracy of the test statistic 𝐓𝐓𝑫𝑫𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  is 
61.32%, while the authentication accuracy of the GBDT+ 𝐓𝐓𝑫𝑫𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  scheme increases by 
38.60%, and its authentication accuracy can reach 99.92%. From the above analysis, it can 
be seen that in the steamer plant scenario, the machine learning method improves the 
authentication accuracy of the test statistics schemes and solves the challenge of threshold 
selection. 
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Fig. 13. Authentication accuracy in the steamer plant. 
 

4.3.3 Performance in the automotive factory 
Fig. 14 shows the performance of the four machine learning methods in the automotive plant 
scenario (outer loop). In the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿, as shown in Figure (a), the GBDT+ T𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿 
scheme has the best performance, and its authentication accuracy can reach 94.39%. The 
four machine learning methods have a good improvement for the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿. For 
example, the authentication accuracy of the test statistic T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿  is 62.32%, while the 
authentication accuracy of the GBDT +T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿  scheme increases by 11.37%, and its 
authentication accuracy can reach 73.69%. In the test statistics T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿, as shown in Figure (b), 
the KNN+ T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 scheme has the best performance, and its authentication accuracy can reach 
69.28%. The four machine learning methods have a good improvement for the test statistics 
T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For example, the authentication accuracy of the test statistic T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 is 56.08%, while 
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the authentication accuracy of the GBDT+T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿scheme has increases by 14.96%, and its 
authentication accuracy can reach 71.04%. In the test statistics T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, as shown in Figure (c), 
the GBDT+ T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 scheme has the best performance, and its authentication accuracy can 
reach 97.51%. The four machine learning methods have a good improvement for the test 
statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. For example, the authentication accuracy of the test statistic T𝐶𝐶𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 is 68.88%, 
while the authentication accuracy of the GBDT+T𝐶𝐶𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 scheme has increased by 5.89%, and 
its authentication accuracy can reach 74.77%. In the test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, as shown in Figure 
(d), the KNN+ T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 scheme has the best performance, and its authentication accuracy can 
reach 72.06%. The four machine learning methods have a good improvement for the test 
statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 . For example, the authentication accuracy of the test statistic T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  is 
55.66%, while the authentication accuracy of the GBDT + T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  scheme increases by 
9.93%, and its authentication accuracy can reach 65.59%. From the above analysis, it can be 
seen that in the automotive plant scenario (outer loop), the machine learning method 
improves the authentication accuracy of the test statistics schemes and solves the challenge 
of threshold selection. 
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(c)                                                                                  (d) 
Fig. 14. Authentication accuracy in the plant (outer loop). 

 
Fig. 15 shows the performance of the four machine learning methods in the automotive 

plant scenario (inner loop). In the test statistics 𝐓𝐓𝑳𝑳𝑳𝑳𝑻𝑻 , as shown in Figure (a), the 
GBDT+ 𝐓𝐓𝑪𝑪𝑳𝑳𝑳𝑳𝑻𝑻 scheme has the best performance, and its authentication accuracy can reach 
94.03%. The four machine learning methods have a good improvement for the test statistics 
𝐓𝐓𝑳𝑳𝑳𝑳𝑻𝑻. For example, the authentication accuracy of the test statistic 𝐓𝐓𝑨𝑨𝑳𝑳𝑳𝑳𝑻𝑻 is 78.69%, while 
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the authentication accuracy of the GBDT +𝐓𝐓𝑨𝑨𝑳𝑳𝑳𝑳𝑻𝑻  scheme increases by 5.14%, and its 
authentication accuracy can reach 83.83%. In the test statistics 𝐓𝐓𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻, as shown in Figure (b), 
the GBDT+ 𝐓𝐓𝑫𝑫𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻 scheme has the best performance, and its authentication accuracy can 
reach 87.37%. The four machine learning methods have a good improvement for the test 
statistics 𝐓𝐓𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻 . For example, the authentication accuracy of the test statistic 𝐓𝐓𝑪𝑪𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻  is 
55.36%, while the authentication accuracy of the GBDT+𝐓𝐓𝑪𝑪𝑰𝑰𝑳𝑳𝑳𝑳𝑻𝑻scheme increases by 30.09%, 
and its authentication accuracy can reach 85.45%. In the test statistics 𝐓𝐓𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻, as shown in 
Figure (c), the LR+ 𝐓𝐓𝑨𝑨𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻 scheme has the best performance, and its authentication accuracy 
can reach 99.99%. The four machine learning methods have a good improvement for the test 
statistic 𝐓𝐓𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻 . For example, the authentication accuracy of the test statistic 𝐓𝐓𝑪𝑪𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  is 
88.43%, while the authentication accuracy of the GBDT+𝐓𝐓𝑪𝑪𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻 scheme increases by 3.29%, 
and its authentication accuracy can reach 91.72%. In the test statistics 𝐓𝐓𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻, as shown in 
Figure (d), the GBDT+ 𝐓𝐓𝑪𝑪𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  scheme has the best performance, and its authentication 
accuracy can reach 91.34%. The four machine learning methods have a good improvement 
for the test statistics 𝐓𝐓𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻. For example, the authentication accuracy of the test statistic 
𝐓𝐓𝑫𝑫𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  is 67.83%, while the authentication accuracy of the GBDT + 𝐓𝐓𝑫𝑫𝑰𝑰𝑺𝑺𝑺𝑺𝑳𝑳𝑻𝑻  scheme 
increases by 18.46%, and its authentication accuracy can reach 86.29%. From the above 
analysis, it can be seen that in the automotive plant scenario (inner loop), the machine 
learning method improves the authentication accuracy of the test statistics schemes and 
solves the challenge of threshold selection. 
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Fig. 15. Authentication accuracy in the plant internal (inner loop). 
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4.3.4 Performance in the OATS 
Fig. 16 shows the performance of the four machine learning methods in the OATS scenario. 
In the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿, as shown in Figure (a), the GBDT+ T𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿  scheme has the best 
performance, and its authentication accuracy can reach 99.98%. The four machine learning 
methods have a good improvement for the test statistics T𝐿𝐿𝐿𝐿𝐿𝐿 . For example, the 
authentication accuracy of the test statistic T𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿 is 87.24%, while the authentication accuracy 
of the GBDT+T𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 scheme increases by 2.95%, and its authentication accuracy can reach 
90.19%. In the test statistics T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿, as shown in Figure (b), the GBDT+ T𝐷𝐷𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 scheme has 
the best performance, and its authentication accuracy can reach 99.88%. The four machine 
learning methods have a good improvement for the test statistics T𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿. For example, the 
authentication accuracy of the test statistic T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿  is 95.65%, while the authentication 
accuracy of the GBDT+T𝐶𝐶𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿scheme increases by 4.22%, and its authentication accuracy 
can reach 99.87%. In the test statistics T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, as shown in Figure (c), the GBDT+ T𝐶𝐶𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 
scheme has the best performance, and its authentication accuracy can reach 99.96%. The 
four machine learning methods have a good improvement for the test statistic T𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿. For 
example, the authentication accuracy of the test statistic T𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  is 98.77%, while the 
authentication accuracy of the GBDT +T𝐶𝐶𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  scheme increases by 1.15%, and its 
authentication accuracy can reach 99.92%. In the test statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿, as shown in Figure 
(d), the SVM+ T𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 scheme has the best performance, and its authentication accuracy can 
reach 99.98%. The four machine learning methods have a good improvement for the test 
statistics T𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 . For example, the authentication accuracy of the test statistic T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  is 
90.49%, while the authentication accuracy of the GBDT + T𝐷𝐷𝐼𝐼𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿  scheme increases by 
9.44%, and its authentication accuracy can reach 99.93%. From the above analysis, it can be 
seen that in the OATS scenario, the machine learning method improves the authentication 
accuracy of the test statistics schemes and solves the challenge of threshold selection. 
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Fig. 16. Authentication accuracy in the OATS. 
 

From the above analysis, machine learning improves the authentication accuracy of the 
test statistics schemes. The combination of machine learning and statistics schemes can 
achieve high authentication accuracy without manually selecting the optimal threshold. 
Based on the above analysis, we believe that the combination of machine learning and test 
statistics will guide future research on the channel characteristics-based PLA in the industrial 
wireless network environment. 

5. Conclusion 
In this paper, we evaluated the performance of several channel characteristics-based 
authentication schemes to determine their potential for deployment in industrial wireless 
networks. The simulation results suggested that these test statistics cannot be easily applied to 
all industrial wireless network scenarios. However, we revealed that the channel characteristics 
-based PLA can potentially be utilized in future industrial wireless network deployments. The 
findings also highlight the need for a new PLA solution based on channel characteristics, for a 
broad range of industrial wireless networks. Thus, we recommend combining machine learning 
and multiple test statistics to perform identity authentication in industrial wireless networks. 
We conducted a large number of experiments using four machine learning methods. The 
experimental results show that the combination of machine learning and multiple test statistics 
scheme significantly improves the authentication accuracy and solves the challenge of 
threshold selection. Therefore, compared with the test statistics schemes, the machine learning 
scheme is more suitable for the industrial wireless network environment. Although the 
machine learning scheme presents good performance, this paper only focuses on static and 
low-speed moving environment. The physical layer authentication scheme in high-speed 
moving environment is a subject that researchers in the field of information security need to 
further study. At the same time, the machine learning scheme is a kind of supervised learning, 
which can only identify the samples that have been learned, and cannot give a judgment on the 
samples that have not been learned. Therefore, the combination of unsupervised learning and 
certification technology needs to be studied in the future. 
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