• Title/Summary/Keyword: Convective cell

Search Result 74, Processing Time 0.026 seconds

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee Seungbae;Lee Chang-Jun;Kwon O-Sup;Jeon Woo-Pyung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.779-782
    • /
    • 2002
  • We examine the problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick, open-cell foam with fabric covering and a viscoelastic painted plate of 1mm thick over an acoustic board of 4m thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber ($k_{ch}$) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

  • PDF

Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer (난류 경계층에서 컴플라이언트 코팅된 벽면과 점탄성 벽면의 방사 소음에 관한 실험적 연구)

  • Lee, Chang-Jun;Lee, Seung-Bae;Kwon, O-Sup;Jun, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.294-301
    • /
    • 2003
  • We examine a problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick. open-cell foam with fabric covering and a viscoelastic-painted plate of 1mm thick over an acoustic board of 4mm thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber (k$_{c}$h) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

Temperature field measurement of convective flow in a Hele-Shaw Cell with TLC and color image processing (TLC와 컬러화상처리를 이용한 Hele-Shaw Cell 내부 대류 온도장 측정)

  • Yun, Jeong-Hwan;Do, Deok-Hui;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1114-1122
    • /
    • 1996
  • Variation of temperature field in a Hele-Shaw convection cell was measured by using a HSI true color image processing system and TLC(Thermochromic Liquid Crystal) solution. The relationship between the hue value of TLC color image and real temperature was obtained and this calibration result was used to measure the true temperature. The temperature field in the Hele-Shaw convection cell shows periodic characteristics of 45 sec at Ra = 9.3 * 10$\^$6/. The temperature field measurement technique developed in this study was proved to be a useful and powerful tool for analyzing the unsteady thermal fluid flows.

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

Accurate and Efficient Re-evaulation of Cell-interface Convective Fluxes (다차원 압축성 유동의 격자 경계면 대류 플럭스 계산을 위한 새로운 수치기법 연구)

  • Yoon S. H.;Kim S. S.;Kim K. H.;Kim C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.3-6
    • /
    • 2004
  • In order to reduce the excessive numerical dissipation which is induced when a grid system is not aligned with a discontinuity, a new spatial treatment of cell-interface fluxes is introduced. The M-AUSMPW+ in this paper has the formula that has an additional procedure of re-defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system of multi-dimensional flows.

  • PDF

Three-dimensional Analysis of Heavy Rainfall Using KLAPS Re-analysis Data (KLAPS 재분석 자료를 활용한 집중호우의 3차원 분석)

  • Jang, Min;You, Cheol-Hwan;Jee, Joon-Bum;Park, Sung-Hwa;Kim, Sang-il;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.97-109
    • /
    • 2016
  • Heavy rainfall (over $80mm\;hr^{-1}$) system associated with unstable atmospheric conditions occurred over the Seoul metropolitan area on 27 July 2011. To investigate the heavy rainfall system, we used three-dimensional data from Korea Local Analysis and Prediction System (KLAPS) reanalysis data and analysed the structure of the precipitation system, kinematic characteristics, thermodynamic properties, and Meteorological condition. The existence of Upper-Level Jet (ULJ) and Low-Level Jet (LLJ) are accelerated the heavy rainfall. Convective cloud developed when a strong southwesterly LLJ and strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Environmental conditions included high equivalent potential temperature of over 355 K at low levels, and low equivalent potential temperature of under 330 K at middle levels, causing vertical instability. The tip of the band shaped precipitation system was made up of line-shaped convective systems (LSCSs) that caused flooding and landslides, and the LSCSs were continuously enhanced by merging between new cells and the pre-existing cell. Difference of wind direction between low and middle levels has also been considered an important factor favouring the occurrence of precipitation systems similar to LSCSs. Development of LSCs from the wind direction difference at heights of the severe precipitation occurrence area was also identified. This study can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of severe weather.

ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION (Rayleigh-Benard 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.62-68
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from Ra=$2{\times}10^6$ to Ra=$10^9$ and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) (Nu=$0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) (N=$0.124Ra^{0.309}$) in the 'hard' convective turbulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh-Benard convection.

ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION WITH THE SECOND-MOMENT TURBULENCE MODEL (이차모멘트 난류모델을 사용한 Rayleigh-Benard 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.111-117
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from $Ra=2{\times}10^6$ to $Ra=10^9$, and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) ($Nu=0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) ($Nu=0.124Ra^{0.309}$) in the 'hard' convective tubulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh Benard convection.

  • PDF

Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry (홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.530-535
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at $Ra = 6.35{\times}10^6$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful for analyzing the temperature field variations of unsteady thermal fluid flows.

  • PDF

Temperature Field Measurements of Hele-Shaw Convection Cell Using a Holographic Interferometry (홀로그래픽 간섭계를 이용한 Hele-Shaw Convection Cell 내부 온도장 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1624-1631
    • /
    • 2001
  • Variations of temperature field in a Hele-Shaw convection cell (HSC) were measured using a holographic interferometry with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Especially, the period of oscillation at Ra = 6.35 $\times$ 10$^{6}$ was 62 seconds. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noise, compared with the double-exposure method. The two holographic interferometer techniques employed complementary in this study were proved to be useful fur analyzing the temperature field variations of unsteady thermal fluid flows.