• Title/Summary/Keyword: Convection-diffusion

Search Result 227, Processing Time 0.025 seconds

Optimization and Mathematical Modeling of the Transtubular Bioreactor for the Production of Monoclonal Antibodies from a Hybridoma Cell Line

  • Halberstadt, Craig R.;Palsson, Bernhanrd O.;Midgley, A.Rees;Curl, Rane L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • This report describes the use of a transtubular bioreactor to study the relative effects of diffusion versus perfusion of medium on antibody production by a hybridoma cell line. The study was performed with a high-density cell culture maintained in a serum-free, low-protein medium for 77 days. It was determined that the reactor possessed a macro-mixing pattern residence time distribution similar to a continuous stirred tank reactor (CSTR), However, due to the arrangement of the medium lines in the reactor, the flow patterns for nutrient distribution consist of largely independent medium path lengths ranging from short to long. When operated with cyclic, reversing, transtubular medium flow, some regions of the reactor (with short residence times) are more accessible to medium than others (with long residence times). From this standpoint, the reactor can be divided into three regions: a captive volume, which consists of medium primarily delivered via diffusion; a lapped volume, which provides nutrients through unilateral convection; and a swept volume, which operates through bilateral convection. The relative sizes of these three volumes were modified experimentally by changing the period over which the direction of medium flow was reversed from 15 min (larger captive volume) to 9 h (larger swept volume). The results suggest that antibody concentration increases as the size of the diffusion-limited (captive) volume is increased to a maximum at around 30 min with a sharp decrease thereafter. As reflected by changes in measured consumption of glucose and production of lactate, no significant difference in cellular metabolism occurred as the reactor was moved between these different states. These results indicate that the mode of operation of the transtubular bioreactor may influence antibody productivity under serum-free, low-protein conditions with minimal effects on cellular metabolism.

Chloride penetration in the marine concrete pier considering diffusion and convection (확산과 이송을 고려한 해양 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.413-416
    • /
    • 2008
  • Reinforcement corrosion is generally prohibited under normal condition by the alkalinity of the pore water in the concrete. However, concrete structures in marine environment are subjected to chloride attack due to the high salinity of the sea water. Thus the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is a decisive factor for the determination of service life of the marine concrete structure because chloride ions are abundant in the sea, and piers are the typical construction elements in concrete structures in marine environment. Hence, it is of great importance to evaluate the service life of the piers. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion and convection movement of chlorides. Result reveals that the service life of the reinforcement with drying-wetting cycles is much shorter than that of the reinforcement with saturated condition. This may be due to the fact that moisture movement is much faster that chloride diffusion.

  • PDF

Development of Chloride Penetration Analysis Program Considering Environmental Conditions (환경조건을 고려한 염소이온 침투해석 프로그램 개발)

  • Kim, Ki Hyun;Jang, Seung Yup;Cha, Soo Won;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.709-718
    • /
    • 2008
  • Developed is a chloride penetration analysis program in which changes of environmental conditions such as temperature, humidity and external chloride concentration, and the diffusion, convection and binding of chlorides are considered. In order to consider the changes of environmental conditions, analyses for temperature and moisture distribution are implemented simultaneously, and variation of diffusion coefficients due to temperature, humidity and age is also considered. By comparing the calculated total chloride contents with some experimental data, it has been confirmed that the proposed analysis program can trace measured chloride distribution well. Also, through some example analyses, the mechanism of accumulation of chlorides at near surface and acceleration of corrosion of steel reinforcement in case that the moisture distribution changes according to repeated drying and wetting cycles have been verified.

NON LINEAR VARIABLE VISCOSITY ON MHD MIXED CONVECTION HEAT TRANSFER ALONG HIEMENZ FLOW OVER A THERMALLY STRATIFIED POROUS WEDGE

  • Kandasamy, R.;Hashim, I.;Ruhaila, K.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.161-176
    • /
    • 2008
  • The effect of variable viscosity on MHD mixed convection Hiemenz flow over a thermally stratified porous wedge plate has been studied in the presence of suction or injection. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection and has a power-law variation of the wall temperature. An approximate numerical solution for the steady laminar boundary-layer flow over a wall of the wedge in the presence of thermal diffusion has been obtained by solving the governing equations using numerical technique. The fluid is assumed to be viscous and incompressible. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results obtained shows that the flow field is influenced appreciably by the magnetic effect, variable viscosity, thermal stratification and suction / injection at wall surface. Effects of these major parameters on the transport behaviors are investigated methodically and typical results are illustrated to reveal the tendency of the solutions. Comparisons with previously published works are performed and excellent agreement between the results is obtained.

  • PDF

Double-Diffusive Convection in a Salt-Stratified Fluid Heated From Below (농도 성층화된 유체의 아랫면 가열에 의한 이중확산대류에 관한 연구)

  • 강신형;김무현;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3297-3304
    • /
    • 1994
  • Experimental investigation have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution heated from below in a cylindrical cavity. The objective is to examine the process of mixed-layer formation, the flow phenomena, the heat transfer characteristics, and temperature and concentration distribution according to the changes in the effective Rayleigh number based on the reference height which represents the relation of temperature and concentration gradient. The types of initially formed flow pattern are categorized in three regimes depending on the effective Rayleigh number ; stagnant flow regime, single mixed-layer flow regime and successively formed multiple mixed-layer flow regime. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered flow regime, but both linear in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly. The layers expand by diffusion of concentration through the interface along with its random fluctuation.

Fire Sensing Characteristics and Natural Convection in the Enclosure Partly Heated from Below (밑면이 부분 가열체를 갖는 정사각 밀폐공간내의 자연대류와 화재감지에 관한 연구)

  • 추병길
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.6-16
    • /
    • 1990
  • In this paper, the natural convection in a square enclosure, partly heated from below, with two adiabatic vertical wall and one upper horigental wall is studied nomerically. In numerical study, SIMPLE(Semi-Implicit for Pressure Linked Equation) algorithems are applied for the integration of momentum and energy equation. The grid size used in this study is the coordinates of size (22$\times$22). As a result of numerical analysis, the initial fluid flow depends on the thermal diffusion, but, as time passes, the fluid flow depends on convection and buoyancy of the enclosure. In Case 1, the heating region was been in the central position of the bottom wall. In case 2, the heating region was in the left position of the bottom. In case of Case 1, the lapse time of sensing the temperature of 72$^{\circ}C$ is approximately 15 sec almost at the same time in the coordinates (6, 22), (11, 22). In case of Case 2, the lapse time in the coordinates (6, 22), (11, 22) was 27 sec, 25 sec repectively. Also in case of Case 1 or Case 2, the gradients of y-position of the two sensors are transposed each other.

  • PDF

Effects of thermal boundary conditions and microgravity environments on physical vapor transport of $Hg_2Cl_2-Xe$ system

  • Kim, Geug-Tae;Kwon, Moo-Hyun;Lee, Kyong-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.172-183
    • /
    • 2009
  • For the effects of the nonlinear temperature profiles and reduced-gravity conditions we conduct a two-dimensional numerical modeling and simulations on the physical vapor transport processes of $Hg_2Cl_2-Xe$ system in the horizontal orientation position. Our results reveal that: (1) A decrease in aspect ratio from 5 to 2 leads to an increasingly nonuniform interfacial distribution and enhances the growth rate by one-order magnitude for normal gravity and linear wall temperature conditions. (2) Increasing the molecular weight of component B, Xenon results in a reduction in the effect of solutal convection. (3) The effect of aspect ratio affects the interfacial growth rates significantly under normal gravity condition rather than under reduced gravitational environments. (4) The transition from the convection-dominated regime to the diffusion-dominated regime ranges arises near at 0.1g$_0$ for operation conditions under consideration in this study.

Numerical study on PEM fuel cell performance with variation of GDL permeability and channel geometry (기체확산층의 유동투과율과 채널 형상 변화에 따른 고분자 전해질 연료전지 성능변화 수치연구)

  • Koh, Soo-Gon;Sohn, Sang-Ho;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3114-3119
    • /
    • 2008
  • Relatively high convective flow exists in the under-rib regions of a gas diffusion layer (GDL) when serpentine flow fields are employed in a PEMFC. This under-rib convection is believed to be favorable for the performance of PEMFCs, by enabling more effective use of catalysts in the under-rib regions. From the fact that the under-rib convection in a GDL is directly proportional to the permeability of the GDL, computational fluid dynamics (CFD) simulations were performed to discover the relationship between the GDL permeability and the PEMFC performance. Single-, triple-, and quintuple-path parallel serpentine flow fields for $9\;cm^2$ active cell area were considered while changing the GDL permeability from $1{\times}10^{-12}$ to $5{\times}10^{-11}m^2$. The results showed that higher GDL permeability generally resulted in better performance of PEMFCs, but the degree of performance enhancement became smaller as the parallel path number increased. The effects of the permeability on the local variables were also discussed.

  • PDF

Residence Time Distribution in the Chromatographic Column: Applications in the Separation Engineering of DNA

  • Park, Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.117-125
    • /
    • 2003
  • Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid -liquid systems, for example, from chromatography Showing how the column efficiency is improved by the use of a n electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements. which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.

The Effects of $CO_2$ on Heat Transfer from Hydrogen Oxygen-enriched Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.261-266
    • /
    • 2003
  • An experimental study has been conducted to evaluate the effects of $CO_{2}$ on heat transfer from hydrogen oxygen-enriched flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which mounted on top of the furnace. Five composition conditions of oxidizer were chosen with replacing $N_{2}$ with $CO_{2}$. In a steady state, total and radiative heat flux rates from the flame to the wall of furnace has been measured using heat flux meters. Temperature distribution in furnace also has been checked. Increasing $CO_{2}$ ratio in the oxidizer, the dominant heat transfer mode was changed into convection from radiation. Temperature in the furnace decreased but total heat flux increased.

  • PDF