• Title/Summary/Keyword: Control technique

Search Result 8,519, Processing Time 0.037 seconds

Robust Flight Control System Using Neural Networks: Dynamic Surface Design Approach (신경 회로망을 이용한 강인 비행 제어 시스템: 동적 표면 설계 접근)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.12
    • /
    • pp.518-525
    • /
    • 2006
  • This paper presents the adaptive robust control method for the flight control systems with model uncertainties. The proposed control system can be composed simply by a combination of the adaptive dynamic surface control (DSC) technique and the self recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides us with the ability to overcome the 'explosion of complexity' problem of the backstepping controller. The SRWNNs are used to observe the arbitrary model uncertainties of flight systems, and all their weights are trained on-line. From the Lyapunov stability analysis, their adaptation laws are induced and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a high performance aircraft (F-16) are utilized to validate the good tracking performance and robustness of the proposed control system.

Control of Bio Electrical Hybrid System using LMI Technique (선행행렬부등식(LMI) 기법을 이용한 전기적 특성을 갖는 복합 생체 시스템 제어)

  • Oh, Y.S.;Min, S.J.;Oh, K.S.;Heo, H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2687-2689
    • /
    • 2004
  • LMI(Linear Matrix Inequalities) technique is implemented to control hybrid bio system with electric element Biological materials such as muscle and tissue are modeled as electrically passive element in the system. State feedback controller for the hybrid system is designed with constrained control input. The hybrid bio electrical system is characterized in terms of the time and frequency.

  • PDF

Robust $\textrm{H}_\infty$ Control Design for the Space Station with Structured Parameter Uncertainty

  • Byun, Kuk-Whan;Bong-Wie;Dabid-Gaiier;John-Sunkel
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.431-441
    • /
    • 1991
  • A robust H$_{\infty}$ control design methodology and its application to a Space Station attitude and momentum control problem are presented. This new approach incorporates nonlinear multi-parameter variations in the state-space formulation of H$_{\infty}$ control theory. An application of this robust H$_{\infty}$ control synthesis technique to the Space Station control problem yields a remarkable result in stability robustness with respect to the moments-of-inertia variation of about 73% in one of the structured uncertainty directions. The performance and stability of this new robust H$_{\infty}$ controller for the Space Station are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique.que.

  • PDF

Construction of a robust dead beat control system considered a transient response

  • Yoshida, Satoru;Kamiya, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.106-109
    • /
    • 1995
  • First, in this paper we propose a new dead best control system design technique by which we can specify a transient response before the settling time. Though the resultant system has the same system configuration as Reference[1], that is realized by adapting the performance index which includes the term of the square of difference between specified and pracitical responses. Next, we state a technique which gives the dead beat control system robustness and construct a robust dead beat control system. Simulations of the proposed dead beat control and robust dead beat control systems show expected results.

  • PDF

A ROBUST CONTROL OF PM SYNCHRONOUS MOTOR USING ACCELERATING TORQUE FEEDBACK

  • Kim, Hyun-Soo;Kim, Myung-Bok;Youn, Myung-Joong;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.470-475
    • /
    • 1998
  • A robust control technique is presented for a high performance control of a permanent-magnet(PM) synchronous motor. In order to deal with the internal and external disturbances of a PM synchronous motor drive system, a new feedback control structure is proposed. Since the dynamic behavior of the PM synchronous motor drive system is mainly concerned with the difference between the electro-magnetically developed torque and the load torque which generally referred to as an accelerating torque, the estimation and control techniques of this torque are introduced. The simulations and experiments are carried out for the DSP-based PM synchronous motor drive system and the results well demonstrate the effectiveness of the proposed control technique.

  • PDF

Temperature Control of Ultrasupercritical Once-through Boiler-turbine System Using Multi-input Multi-output Dynamic Matrix Control

  • Moon, Un-Chul;Kim, Woo-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.423-430
    • /
    • 2011
  • Multi-input multi-output (MIMO) dynamic matrix control (DMC) technique is applied to control steam temperatures in a large-scale ultrasupercritical once-through boiler-turbine system. Specifically, four output variables (i.e., outlet temperatures of platen superheater, finish superheater, primary reheater, and finish reheater) are controlled using four input variables (i.e., two spray valves, bypass valve, and damper). The step-response matrix for the MIMO DMC is constructed using the four input and the four output variables. Online optimization is performed for the MIMO DMC using the model predictive control technique. The MIMO DMC controller is implemented in a full-scope power plant simulator with satisfactory performance.

Composite Fuzzy Control of a Single Flexible Link Manipulator (단일 유연 링크 매니퓰레이터의 복합 퍼지 제어)

  • 김재승;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.353-353
    • /
    • 2000
  • To control a light weight flexible manipulator, a composite fuzzy controller is proposed. The controller is designed based on two time scaled models. A singular perturbation technique is applied for deriving the models. The proposed controller, however, does not use the complex equilibrium manifold equations, which are usually needed in the controller based on the two time scaled models. The controller for a slow sub-model and a fast sub-model are T-S type fuzzy controllers, which use 3 linguistic variables for each sub-model. A step trajectory is used in simulations as a reference trajectory of joint motions. The results of simulations with the proposed controller show excellent damping of flexible motions compared to a controller with derivative control of flexible motions.

  • PDF

Servo Control System of Permanent Magnet Synchronous Motor Using Space Voltage Vector PWM (공간전압벡터 PWM을 이용한 영구자석형 동기전동기의 서보제어 시스템)

  • Won, Euy-Youn;Ra, Sang-Hoon;Yoon, Duck-Yong;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.290-293
    • /
    • 1994
  • This paper proposes a servo control system of SPMSM (Surface-mounted Permanent Magnet Synchronous Motor) which essentially uses vector control method. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed processing of algorithm for vector control and inverter switching for PWM is carried out by TMS320C31 DSP and IGBT module, respectively. The proposed scheme for 2.2kW SPMSM is verified through digital simulations and experiments, which show higher performance than that of traditional hysteresis current control technique.

  • PDF

Robust Control of Planar Biped Robots in Single Support Phase Using Intelligent Adaptive Backstepping Technique

  • Yoo, Sung-Jin;Park, Jin-Rae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.269-282
    • /
    • 2007
  • This paper presents a robust control method via the intelligent adaptive backstepping design technique for stable walking of nine-link biped robots with unknown model uncertainties and external disturbances. In our control structure, the self recurrent wavelet neural network(SRWNN) which has the information storage ability is used to observe the uncertainties of the biped robots. The adaptation laws for all weights of the SRWNN are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Also, we prove that all signals in the closed-loop adaptive system are uniformly ultimately bounded. Through computer simulations of a nine-link biped robot with model uncertainties and external disturbances, we illustrate the effectiveness of the proposed control system.

ASIG Design for Direct Torque Control of Induction Motor using VHDL (VHDL을 이용한 유도전동기의 직접 토크 제어 ASIC 설계)

  • Lee, H.J.;Kim, S.J.;Lee, B.C.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.336-338
    • /
    • 2000
  • Recently many studies have been performed for variable speed control of induction motor. Direct Torque Control(DTC) is emerging technique for variable speed control of PWM inverter driven induction motor. DTC allows the direct control of stator flux and instantaneous torque through simple algorithm. In this paper ASIC design technique using VHDL is applied to DTC based speed control of induction motor. ASIC for DTC based speed control is designed through the description of coordinate transformation, speed controller stator flux and torque estimator, stator flux and torque controller, stator flux position detector. FSM(Finite State Machine) and inverter voltage switching vector. Finally the above system has been implemented on the FPGA (XC4052XL-PG411). Simulation and experiment has been performed to verify the performance of the designed ASTC.

  • PDF