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Abstrarct

A robust Hy control design methodology and its ap-
plication to a Space Station attitude and momentum
control problem are presented. This new approach in-
corporates nonlinear multi-parameter variations in the
state-space formulation of H,, control theory. An ap-
plication of this robust He control synthesis technique
to the Space Station control problem yields a remark-
able result in stability robustness with respect to the
moments-of-inertia variation of about 73% in one of the
structured uncertainty directions. The performance and
stability of this new robust H, controller for the Space
Station are compared to those of other controllers de-
signed using a standard linear-quadratic-regulator syn-
thesis technique.

1. Introduction

The Space Station Freedom will employ control mo-
ment gyros (CMGs) as primary actuating devices dur-
ing normal flight mode operation, and it will utilize the
gravity-gradient torque for the CMG momentum man-
agement [1,2]. An attitude determination system of the
Space Station will employ rate gyros and star trackers
to compute the states of the vehicle for control pur-
poses. Multivariable, periodic-disturbance accommo-
dating controllers have been developed and are being
considered for actual implementation to the Space Sta-
tion Freedom [3-7].

As illustrated in Fig. 1, the Space Station will be as-
sembled and maintained using the Mobile Remote Ma-
nipulator System (MRMS) and its Mobile Transporter
(MT). The MRMS/MT carrying a large payload will
cause significant changes in the inertia property of the
Space Station; consequently, it will affect the overall per-
formance and stability of the control system. Study re-
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sults on the effects of such MRMS/MT operations (e.g.,
a “bay” translation along the pitch axis and 180-deg
slew maneuver about the pitch axis) can be found in
[7). The study results of [7] indicate that some form of
adaptive or robust control with more than 50% inertia
variation margins is necessary to account for the large
changes in the inertia property caused by the motion of
the MRMS/MT and its large payload. The study re-
sults also indicate that a high-bandwidth controller has
unacceptable transient responses during the payload ma-
neuvers.

In this paper, a robust control synthesis technique
based on H,, control theory is developed and applied
to the robust control design problem of the Space Sta-
tion discussed above. This new approach incorporates
nonlinear multi-parameter variations in the state-space
formulation of Ho, control theory [8-10]. An applica-
tion of this robust H., control synthesis technique to
the Space Station yields a remarkable result in stability
robustness with respect to the moments-of-inertia vari-
ation of about 73% in one of the structured uncertainty
directions. Such a 73% inertia variation margin is rather
significant compared to the margin of 44% of a typi-
cal linear-quadratic-regulator (LQR) design [3-7] with
nearly the same control bandwidth as the robust H,
controller.

This paper is organized as follows. In Section 2 a
robust full-state feedback control synthesis technique
based on the Hy control theory is presented, which
exploits the concept of input-output decomposition of
the uncertain system parameters [10-13]. A “full-state”
feedback control is considered since the full states of
the vehicle are available from an attitude determina-
tion system of the Space Station. A similar approach
for the dynamic compensator design can be found in
[13). The linearized equations of motion of the Space
Station are reviewed in Section 3. A robust H, con-
troller is synthesized in Section 4, with special emphasis
on the input-output decomposition of nonlinear, uncer-
tain multi-parameters of the system.



2. Robust H,, Control Synthesis

Background

In recent years there has been a growing interest in
robust stabilization and control based on Ho, control
theory [8-10,13-15), and substantial contributions have
already been made to the state-space characterization
of the Ho control problems [8,9]. Most standard Hoo-
related control techniques are, however, concerned with
the sensitivity minimization with respect to the external
disturbances, and are not directly related to the struc-
tured parameter uncertainty. Recently, a new way of
incorporating parameter uncertainty in the robust He
compensator design is developed in [10,13] by converting
the parameter-insensitive control problem into a con-
ventional H., problem. The state-space solution to a
standard Ho, control problem in [8,9] is then utilized by
redefining the structured parameter variations in terms
of a fictitious input and output.

In this section, such a robust H, control synthesis
technique developed in [10,13] is reviewed with special
emphasis on the new concept of “directional” parame-
terization of nonlinear, uncertain parameters. Only the
“full-state” feedback control case is considered here since
the Space Station control problem does not need the con-
sideration of state estimation. A more general case with
dynamic compensation can be found in [10,13).

The Hq, space consists of functions which are bounded
and stable. The Heo-norm of a real-rational matrix T'(s)
is defined as

1T lleo

sup{||T'(s)]| : Re(s) > 0}
sup [|1TGw)ll

sup a[T(jw))

1l

where &[T (jw)] denotes the largest singular value of
T(jw) for a given w.

In this paper, we consider a linear, time-invariant mul-
tivariable system described by [8,9]

z(t) = A z(t) + B, w(t) + B u(t) (1a)
Z(t) = Clz(t) + Du‘w(t) + Dlz‘u(t) (lb)
where z(t) is an n-dimensional state vector and is as-
sumed to be directly measured, w(t) an m,-dimensional
disturbance vector, u(t) an m,-dimensional control vec-

tor, and z(t) a p;-dimensional controlled output vector.
The transfer function representation of this system is

given by
#(s) = [ Pu(s) Puo(s) | [ e ®)

while the plant transfer matrix P(s) is related to the

matrices in Egs. (1) by

P(s)=Ci(sI- A)"'[ By By |+[ D Dy
(3
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Internal Feedback Loop
Consider an uncertain dynamical system described as

. - - - z
z A B, B, ]

= 4

[ z ] [ C: Dy Dy 1:: )

where C,, D1y, and D, are not subject to parameter
variations. The system matrices possessing uncertain
parameters in Eq. (4) are linearly decomposed into an
internal feedback loop [11,12,13] as follows:

¢]_[[A B, B, z
[Z]={[e 2 Buleald)

(5)
where the first matrix in the right-hand side is the nom-
inal system matrix and A, is the perturbation matrix

defined as

Suppose that there are ! independent parameters
Pi,--.,pi and that their variations are bounded as p; <
pi < pi, or |Ap;| < 1. If A, is linearly dependent of
each uncertain parameter, then it can be decomposed as
derived in [11,13]. However, A, may contain elements
that are nonlinear combinations of Ap;’s. Variations in
the uncertain matrix elements, Ae;, are represented in
a functional form as

AA AB,
0 0

AB;
0

= (6)

Ae; = Ae;(Ap) for i=1,---¢

where Ap = [Ap1,---,Ap]7 and ¢ is the number of
the uncertain matrix elements of A.. The perturbation
matrix A, is then decomposed as

A,:—[Ng‘]E[N, N, N,]=-MEN
)

where the columns of M and the rows of N span the
columns and the rows of A,, respectively; and

Ael (Ap) 0

E= (8)

0 Aey(Ap)

If Ae;’s are linear in Ap;’s, then the above input-output
decomposition can be rearranged to become a rank-one
input-output decomposition, which has been applied to
a real-parameter variation problem [13).

Define the following new variables

z
z, =[N, 0 N, N, | wr | (9a)
u
w,= —Ez,, (9b)



then the perturbed system, Eq. (5), and the input-
output decomposition, Eq. (7), can be combined as:

P A M, B, B, .

2z, | =| N 0 N, N, P 1 (102)
z C, 0 Dy, Dy

w, =-Ez, (10b)

where w, and z, are considered as the fictitious input
and output, respectively, caused by the plant perturba-
tion; and E is considered as a fictitious, internal feed-
back loop gain matrix.

The above internal feedback loop representation of the
plant parameter uncertainty becomes useful for stabil-
ity/performance robustness analysis discussed later in
this section. In fact, the parameter-insensitive control
synthesis problem becomes a convensional H,, distur-
bance attenuation problem, which can be easily solved
by using the state-space formulation of the H,, control
theory.

Directional Parameter Variations

A “hypercube” in the space of the plant parameters,
centered at a nominal point, is often used as a stabil-
ity robustness measure [16]. The robust control synthe-
sis problem is then to find a controller which yields the
largest hypercube that will fit within the existing, but
unknown, region of stability in the plant’s parameter
space. In [16], a computational method is developed,
which exploits the mapping theorem and the “multi-
linear” property of the plant’s uncertain parameters.
However, as shown later in this paper, the Space Sta-
tion has the uncertain moments of inertia which appear
in the internal feedback loop gain E as nonlinear func-
tions.

One way to overcome the presence of such uncertain
parameters in the internal feedback loop modeling is to
consider ey, - -, e, of E as new independent parameters
and to find the worst possible bounds e; and ¢; for each
ei; that is, e; < e; < é;. This approach then reduces to
the standard input-output decomposition problem with
¢ independent parameters. However, e;’s may be func-
tionally dependent to each other through actual param-
eter variations, Ap;’s. Whenever e;’s are closely related,
this approach will result in a very conservative control
design; furthermore, some valuable information on the
structured parameter variations is not utilized in this
approach.

In order to exploite some structured or directional in-
formation on the plant parameter variations, the inter-
nal feedback loop gain matrix E is linearized about the
nominal parameter set with respect to small Ap;’s as
follows:

E=M,E,N;
A2 -MM,E\N,N

(11a)
(11b)
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where E, contains only the actual, independent uncer-
tain parameters. The standard form of an input-output
decomposition such as Eq. (7), is obtained by re-defining
M, N, and E as
M~MM,
N — NN
E — El

(12)

In some cases, the plant parameter perturbations
Ap;’s may possess a certain direcfional relationship with
the following form:

for i=1,---,1

(13)

where g; represents the direction and magnitude of Ap;
and & is a scalar variable which represents the system
uncertainty. Parameter variations involving a single pa-
rameter variable are referred to as uni-directional pa-
rameter variations, while those involving more than one
parameter variable are referred to as multi-directional
parameter variations.

The multi-directional parameter variations are char-
acterized as:

Ap; = gib

(14)

where g;; represents the direction and magnitude of Ap;
caused by §; for multi-directional perturbations.

For such cases with multi-directional parameter vari-
ations, the internal feedback loop gain E in Eq. (8) be-
comes a function of §;’s:

Ap; = gi6; fori=1,--- land j=1,.--,r

A€1(6) 0
E= (15)
0 Aey(6)
where § = [6;,---,6,]T. Since £ is nonlinear in §;’s

in general, the linearized input-output decomposition is
again applied here, as in Eqgs. (11) and (12), to be incor-
porated in the robust control synthesis.

Stability /Performance Robustness

A robust Hy full-state feedback control synthesis
technique presented in this section exploits the inter-
nal feedback loop modeling concept and the Ho, control
theory. This new robust control design methodology is
summarized in terms of three theorems. Detailed proofs
of these theorems can be found in [8-10]. Development
and application of robust H,, compensator synthesis can
be found in [13].

The parameter uncertainty model given by Eq. (7) and
the nominal plant described by Eq. (2) can be combined
as

zp Gn G2 Gus w,

z = Ggl G22 G23 w (163.)
z Ga1 Gi2 Ga u

w, = —Ez, (16b)
u =-Kz (16¢)



where w, and z, are, respectively, the fictitious input
and output, E is the fictitious internal loop gain matrix,
and K is a full-state gain matrix to be determined.

The closed-loop system, but with the fictitious inter-
nal loop open, becomes:

Zp | Wy
[2]-rlz] o
w, = —-Ez (17b)
where
Ty T2
= 18
T [ Ty T ] (182)
T =G —GuK({I+GuK) 'Gs;  (18b)
Ti2=G1a— G KT+ GusK) 'Gsy  (18¢)
Ty = G2y — GoaK(I+ GaaK) 'Gay (184)
Toy = Gag — G23K(I+ G33K)'_1G32 (186)

The actual closed-loop transfer function matrix from
w to z with plant perturbations becomes

T.w =Ty —TnEI+TnE) Ty, (19)

Note that, in Egs. (16) and (17), the parameter un-
certainty does not appear in the transfer function ma-
trices. Equations (17) can be used for the stabil-
ity/performance robustness characterization. Sufficient
conditions for robust stability and performance are pro-
vided by the following Theorems 1 and 2.

Theorem 1 (Stability Robustness)
T.w(s,aE) Yo € [0,1] is robustly stable for ||E|| < ¢,
and ¢ > 0, if

[T (o <€

where ¢ is a measure of the magnitude of the plant pa-
rameter uncertainty E in Eq. (8).

It is seen that Ty, determines the stability robustness
with respect to parameter uncertainty. Small ||T11]loo
allows large parameter variations for closed-loop stabil-
ity. For this reason T'; is often referred to as robustness
function [12]. The above theorem provides a sufficient
condition for the closed-loop stability, resulting in a con-
servative control design. Since the condition in Theorem
1 is concerned with a deterministic bound, the H, con-
trol theory can be employed for the internal feedback
loop model. The next theorem provides a sufficient con-
dition for guaranteed performance robustness.

Theorem 2 (Performance Robustness)
T.uw(s,aF) Ya € [0,1] is stable, and ||T,u (5, 2E)]|eo <
¥ Va € [0,1] with ||E|| <y~ if

ITHeo < v (20)

where T and T,, are defined in Eqs. (17) and (19),
and v is an upper bound for the desired performance
specification.

The above two theorems provide conditions for robust
stability and performance of the perturbed closed-loop
system in terms of T3 and T in Egs. (17) and (18).
The following re-definition of z, w, and the associated
matrices enables us to employ the standard state-space

representation given by Eq. (1):
[ , ]’
w

~17]
z
N
BIQ—[M;- Bl]’ cl‘—[cr], (21)
N
Dyg — vl
12 [DIZ]

0 Ny
Dll - [ 0 I)11 ] ’
The following theorem [8] gives a robust H., controller
which satisfies the condition in Eq. (20).

Theorem 3 (H Full-State Feedback Controller)
Assume that

(i) (A, B,) is stabilizable and (C, A) is detectable,
() D[ €1 Di]=[0 I],

(iii) the rank of P5(jw) is my for all w, and
(iv) Dy = 0.

-Given the above assumptions (i) through (iv), there
exists an internally stabilizing controller such that, for
the closed-loop transfer matrix T in Eqs. (17) and for a
given design variable 7,

I Tlleo <

if and only if the following Riccati equations

1
0=ATX4+XA-X(B,B] - F13119{))(+c:?c1

(22)
have unique symmetric positive senii-definite solution X
such that

1
A—-(B,BT——B,BT)X and A~ B,BT X are stable.
2 ¥? 1 2

A state-feedback gain that satisfies ||T;ylleo < 7,
where 7 is a design variable specifying an upper bound
of the perturbed closed-loop performance T, is then

obtained as
K=BTx (23)

In order to achieve the desired closed-loop perfor-
mance over all frequencies, T,,, is often formulated to
include frequency-dependent weighting matrices. (A
proper selection of the weighting matrices is an impor-
tant step in any optimization-based design techniques,
such as the linear-quadratic-gaussian (LQG) control and
Hoo-optimization.) In this paper, constant diagonal
weighting matrices are used. Inverses of the diagonal
elements of the weighting matrix is referred to as weigth-
ing factors. The weighting factors and « represent rel-
ative input-output levels and overall closed-loop perfor-
mance level, respectively. In the Appendix, the usage



of constant weightings, scaling, and orthogonal trans-
formations on 1, w, and z for practical implementation
of Theorem 3 are briefly summarized.

3. Space Station Model

The robust control synthesis technique developed in
Section 2 is applied to the Space Station subject to large
payload operations which cause significant changes in
the moments of inertia of the system. Dynamical equa-
tions of the Space Station are briefly reviewed (for de-
tails, see (3,4]).

The Space Station in a circular orbit is expected to
maintain local-vertical and local-horizontal (LVLH) ori-
entation during normal mode operation. For small at-
titude deviations from LVLH orientation, the linearized
equations of motion can be written as:

Space Station Dynamics:

I ©Lis I wy
Iy In; I wy
Iy Inp I3z w3
I, 2I3, Izz—1In w1
=n —Iy, 0, Iz wa
Iy -1y, —2h,, ~h3 w3
Ing ~ I, I, 0 6,
+3n? Iy, f33—I, 0 6,
—I3, ~I, 0 03
—2I3 —up +w
+n? Sha | + | —uz+ 1w, (24)
—I2 —u3 + w3
Attitude Kinematics:
6, — nf3 = w, (25a)
f—n =w (25b)
é3 + n01 = w3 (25C)
CMG Momentum:
hy —nhy = u; (26a)
ha = ug (26b)
ha +nh; = us (26¢)

where (1, 2, 3) are the roll, pitch, and yaw control axes
whose origin is fixed at the mass center, with the roll
axis in the flight direction, the pitch axis perpendicular
to the orbit plane, and the yaw axis toward the Earth;
(8y, 82, 03) are the roll, pitch, yaw Euler angles of the
body axes with respect to LVLH axes which rotate with
the orbital angular velocity, n; (w1, wa, w3) are the body-
axis components of the absolute angular velocity of the
station; (I11, I22, Ia3) are the principal moments of in-
ertia; I;; (i # j) are the products of inertia; (hy, hy,
h3) are the body-axis components of the CMG momen-
tum; (u, uz, ua) are the body-axis components of the
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control torque caused by CMG momentum change; (w;,
ws, w3) are the body-axis components of the external
disturbance torque; and n is the orbital rate of 0.0011
rad/sec.

Note that the products of inertia cause three-axis cou-
pling as well as a bias torque in each axis. Fortunately,
most practical situations with small products of inertia
permit further simplification in such a way that pitch
motion is uncoupled from roll/yaw motion. For the case
where the control axes are nearly aligned with the prin-
cipa] axes (11 g Iu, I’_) g 122, and 13 é 133), EqS. (24)
become

‘bl + nk;ws -+ 3n2k191 = —bl u; + blwl (278)
Wy + 3n%k20; = —byuy + baws (27b)
w3 — nkaw, = —bzuz + bsws (27C)
where
ky=(I ~ I3)/ I, bi=1/1,
ko=(1) ~ I3)/ I, by=1/1,,
k3:([2"—11)/13, b3:1/]3

Inertia matrices of the Phase 1 Space Station as well
as the assembly flight #3 are listed in Table 1. In this
paper, only the Phase 1 configuration is considered. The
uncontrolled Space Station with such inertia properties
is in an unstable equilibrium when 6; = 0 (i = 1,2,3).
Also included are expected aerodynamic disturbances
which are modeled as bias plus cyclic terms in the body-
fixed control axes:

w(t) = Bias+ An sin(nt + ¢ )+ Az, sin(2nt + ¢2,) (28)

The cyclic component at orbital rate is due to the effect
of Earth’s diurnal bulge, while the cyclic torque at twice
the orbital rate is caused by the rotating solar panels.
The magnitudes and phases of aerodynamic torque in
each axis are unknown for control design.

4. Space Station Control

A robust Hy, control design for the Space Station is
described here. The Space Station is desired to have a
control system which accommodates the periodic distur-
bances and large inertia variations. In [3,4], a periodic-
disturbance accommodating controller is developed for
the Space Station, and the disturbance rejection filters
for the control of hy, f;, 83 are assumed to have the
following forms:

& +(n)ay = hy (29a)
Bi+ (2n)28, = by (29b)
ay+( n)202 =0, (29¢)
B2+ (2n)2B; = 6, (294)
G3+(n)laz=0 (29¢)
By + (2n)?Bs = 3 (29f)



The pitch control logic, involving the single control
input uy and eight states, is then expressed as

(30)

Uy = K22z2

where K2, is a 1x8 gain matrix and z, is the state
vector defined as

T2 é [92 éz hg fhg g dz ﬂz ﬂ.Z]T. (31)

The CMG momentum and its integral are included to
prevent CMG momentum build-up.

Similarly the roll/yaw control logic is given by two
control inputs, u; and ug, and sixteen states:

Uy Kn Kis z)
= : 32
{ua] Ka K:&s][za] (32)
where K;;’s are 1x8 gain matrices and
z £ (01 w1 by fhy @y 61 By s, (33a)
23 = (63 ws hs fhs as 63 f5 fa]T (33b)

Directional inertia variations for the Space Station are
modeled as

[AL AL AL ]=6[5L 0 5] (34a)
[AL AL AL ] =6[5hL I. Is] (34b)
[AL AL AL ] =6[5L 0 -I3] (34c)
[AL AL AL ] =6[5L - 0] (34d)
[AL AL AL =615 I, —I3] (34)

where 6;’s represent the amounts of directional parame-
ter variations with respect to the nominal inertias I, I,
and I3. The directional variation involving é; is called
a é;-inertia variation in this paper. As discussed in [4],
there exist physical bounds for §;’s due to the inherent
physical properties of the gravity-gradient stabilization
and the moments of inertia itself. Table 2 summarizes
such physical limitations on §;-inertia variations. As dis-
cussed in [3,4], the Phase 1 Space Station becomes un-
stable for as little as —7 % variation in I3 and +8 %
variation in I, because of the inherent physical nature
of the problem.

The robust controller synthesis in this paper is primar-
ily concerned with the §,- and é,-inertia variations. In
particular, the é;-inertia variation is physically caused
by the translational motion of the payload along the
pitch axis, as illustrated in Fig. 1.

Pitch Control

The pitch-axis dynamics with nominal inertias are de-
0 1

NS

d[ 6
+[ e

0,

02
0,

dt
(35)
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where the external disturbance is not included since it
is accommodated by the disturbance rejection filter.

Since the §;-inertia variation does not affect the pitch
dynamics (i.e., k2 and b, remain constant), only the é,-
inertia variation, where only b, has uncertainty, is con-
sidered for the pitch axis.

An input-output decomposition of the perturbed con-
trol distribution matrix AB; in Eq. (35) is obtained as

0

1 1

AB2 = [
L+&) — T

}:—MEN
and
_| 0 _ & - _
M..[bz], E=6, N=-1,

where by = 1/I, for the nominal inertia and §; = 1/(1+
&) -1

The fictitious input w, and the fictitious output z,
for the pitch axis with the §s-inertia variation are then
expressed as

(36a)
(36b)

zp = N [~ug] = uy
w, = —Ezp, = -6z,

These equations replace the parameter variations in
Eq. (35) as follows:

HHE
+ [ . ][wp—uzl (37a)
z, = up (37b)
wp = —6bhz, (37¢)

where ky = (I3 — I;)/I, with the nominal inertias.

The robust control problem for Egs. (35) now be-
comes a disturbance attenuation problem for Egs. (37),
to which Theorems 2 and 3 can be applied. Note that z,
contains only the control input u;. This uncertainty in
the control loop introduces a necessary tradeoff between
stability robustness and performance.

Equations (37) are now augmented by the pitch CMG
momentum dynamics described by Eq. (26b) and distur-
bance rejection filters described by Egs. (29¢) and (29d).
The augmented state vector is 3 as defined in Eq. (31),
and the controlled output 2 is also formed as

With proper selections of the weighting factors, scal-
ing, and orthogonal transformations, as discussed in the
appendix, the augmented system equations are trans-
formed to satisfy the assumption (ii) in Theorem 3. The
performance specification bound ¥ is chosen to be 1, and
a set of weighting factors used in this paper is summa-
rized in Table 7.



By solving the Riccati equation, Eq. (22), a robust
H,, full-state feedback controller for the pitch axis is
obtained with a control gain matrix listed in Table 3.
The closed-loop eigenvalues of the nominal system with
this gain matrix are listed in Table 4. Stability margins
of this new robust H controller with respect to the in-
ertia variations are compared in Table 5 to those of the
previous LQR design in [3]. A significant margin of 70%
for the é;-inertia variation is achieved (compared to the
34% margin of the LQR design). As can be seen in Table
4, however, this new pitch controller has a closed-loop
pole at —8.38n which is relatively large compared to that
of the conventional LQR design of Ref. 3. As discussed
in [14], an H controller often achieves the desired ro-
bustness by having a high bandwidth for a single input
system. The pitch axis design here is such a case; but
the robust Hy, control design for the multi-input case to
be discussed in the next section has a remarkable stabil-
ity robustness margin with nearly the same bandwidth
as the conventional LQR design.

Figure 2 shows the time responses of the nominal
closed-loop system to the initial conditions 8;(0) = 1
degree and 6,(0) = 0.001 deg/sec, and the disturbance
input wy in Table 1. The time responses are comparable
to those of the LQR designs in [3,4].

Roll/Yaw Control

Consider the roll/yaw dynamics with nominal param-
eters described by

6, 0 1 n 0 6,
(;.)1 _ ——3n2k1 0 0 —nkl w1
03 - —-n 0 0 1 93
w3 0 nkz 0 0 w3
0 0
bl 0 —Uux
+ 2 [ o ] (38)
0 b3

where the external disturbances are not included. Vari-
ations in ky, k3, b;, and b3 caused by perturbations in
the moments of inertia are approximated as follows:

AL, AL, Al
By kot =223
A 1 kl I]_ + 11 I1 >
AL Al Al
Akg> 2L 272 23
3 13 13 3 13 )
I Al
Aby = —bl-A—l—, Aby = by —32
I ) I

where kl = (Iz — 13)/11, ka = (12 —_ 1))/13, bl = 1/11,
and b3 = 1/I3, for the nominal inertias.
In particular, for the & -inertia variation, the above

parameter variations become:
Aky =2 — (ky + 1)4,,

I
= (ka + )78,
3

Aby = —by6;,

Akj

R

Aby = —bs 1—161.
I3
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An input-output decomposition of the perturbed sys-
tem matrix A, is then obtained as:

Ac=-ME [N, N,]

or
0 0
1 b0 [& 0
M=149 o E*[o 5,]’
0 bs
_ [ —-3n%I, 0 0 —-nl,
N"[ 0 nfL 0 0 ]
-1 0
mel3 4]
0 -3

where I, 2 ,— Iy + I, and [ £ I, — I + I,

The fictitious input w, and output z, for the roll/yaw
control design incorporating the é;-inertia variation are
expressed as

where z 2 61 w1 03 w3 The perturbed system is
then expressed by the nominal system and the internal
feedback loop as

—uy
—ug

(39a)
(39b)

z, = N:x+ N, [
w, = —FEz, = -6 2,

I.

z = Az + Blw, — u] (40a)
z, =N,z - N,u (40b)
wp, = — 6 2p (40¢)

A A
where u = [u; u3]”, B = M and

0 1 n 0

A | =3n2% 0 0 —nk
A=1 . 0 0 1
0 nks 0 0

Similarly to the pitch-axis design, the standard state-
space representation given by Eq. (1) can be constructed
by redefining w and z. A roll/yaw gain matrix of the ro-
bust Ho, controller is listed in Table 3 for the particular
weighting factors chosen as in Table 7. The closed-loop
eigenvalues of the nominal system with this robust Hy,
controller are listed in Table 4. Stability margins of this
new controller are compared to those of other previous
designs in Table 6. Similarly to the pitch control design,
the robust H,, controller for the coupled roll/yaw axes
has significant improvement in stability margins over the
standard LQR design (e.g., the 73% margin over the
44% margin for the é;-inertia variation). Contrary to
the pitch case with a single control input, however, the
robust H,, controller for the roll/yaw axes with two con-
trol inputs has a relatively low bandwidth! In fact,
the roll/yaw closed-loop poles shown in Table 4 are very
comparable to those of LQR designs in [3-5).



Figure 3 shows the time responses of the nominal
closed-loop system to the initial conditions 6,(0) =
63(0) = 1deg and 6,(0) = 683(0) = 0.001deg/sec, and
the disturbance input w; and w3 in Table 1.

5. Summary

Major results and contributions of this paper are sum-
marized in this section. A robust control synthesis tech-
nique presented in Section 2, which is primarily based
on the results in [10,13] and the state-space formulation
of the H,, control theory in {8,9], further exploits the
concept of linearized, directional variations of nonlinear,
structured uncertain parameters. Applications of this
approach to the full-state feedback control design prob-
lem of the Space Station with uncertain inertia property
have resulted in the following interesting results: (1)
For the pitch control with a single input, the stability
robustness improvement with respect to the overall in-
ertia increases has been achieved mainly by having a
relatively high bandwidth controller and (2) The robust
H control design for the roll/yaw axis with two control
inputs has achieved significant stability robustness over
the LQR design, even with relatively low bandwidth. In
other words, the concept of linearized directional param-
eter variation, combined with the standard H, control
theory, has been shown to be a practical way for design-
ing parameter-insensitive controllers.

For roll/yaw control, the §;-inertia variation was con-
sidered in robust H., control design to accommodate
the moments-of-inertia variations caused by the trans-
lational motion of a large payload along the pitch axis
(see Fig. 1). Since the §;-inertia variation does not affect
the pitch dynamics, the é,-inertia variation was consid-
ered for the pitch control design. It is also emphasized
that the closed-loop system with this new robust H,
controller is stable for £73% &;-inertia variation and for
+70% 8,-inertia variation, compared to the £44% 6, and
+34% 6, stability margins of a typical LQR design.

6. Conclusions

A robust control synthesis technique for uncertain dy-
namical systems subject to nonlinear, structured param-
eter perturbations has been presented, which is based on
the Ho, control theory and the internal feedback loop
modeling concept. This technique was applied to the
multivariable, full-state feedback control design problem
of the Space Station, resulting in remarkable stability
margins with respect to the moments-of-inertia uncer-
tainty over the conventional linear-quadratic-regulator
designs. The linearized, directional parameter variation
concept was shown to be a proper way of accommodat-
ing the nonlinear, structured parameter variations in the
design of a parameter-insensitive controller.
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Appendix

In general, the H, control theory considers frequency-
dependent weighting matrices for the shaping of closed-
loop transfer function T,,. Proper selection of the
weighting matrices, however, is not always obvious. One
practical way is to use a constant diagonal weighting ma-
trix and a normalized output equation. Proper scaling
and orthogonal transformations can be employed to sat-
isfy the assumptions in Theorem 3.

Consider a system given by

1 (1)
z:[i;;]:[cé ]I+ ]u

where D(lg) is assumed nonsingular.

Define r,q0), 7,2, and 7, be the weighting factors
with dimensions of py, ms, and m,, respectively. The
weighting matrices @, R, and W are then defined as:

= [diag{r,m }]™’
[diag{r, }] ™"
[diag{r.,}]™!

Define normalized variables as

:i: :Az+Blw+B2u

1
22
D12

Q
R=1{d
W =[d

(D) = @z
3@ = R®
w =Ww

A scaling factor S for u is also defined as:
%= Su

Substituting the above new variables into the system
equation gives

:i =A$+Bl —lﬁ)-{-st—lﬁ
Q—li(l) _ C(ll) D(IIZ) o
[R-lzm =l o [*t{p® |

The controlled output equation can be rewritten as

(1) oc(V oDV ] .,
- 1 12 sl
RN b Sl

with a QR decomposition of the matrix

EIRS

where P is an orthogonal transformation matrix and L
is lower-triangular (or generally nonsingular).
If the control scaling matrix S can be defined as

1
QD
RD 12

0
L

S=L"!



the following system equation then satisfies the assump-
tions (i) and (iv) in Theorem 3:

= Az + B,W™'w + B,Lu
[io]=#[ 957 ]=+[ 7]
0

I
where PT does not affect the Ho, norm property.
The system matrices are redefined, to be implemented
in a computer software (e.g., CTRL-C), as

B2 — B2L,

(3]

Finally the actual control gain matrix K is obtained by
re-scaling the normalized gain matrix K as:

K=5"'K

x
z()
z(2)

PT u

B, — B,W™!,
Qc{)

Cle—PT[
0

The weighting factors selected for the example design of
this paper are listed in Table 7.
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Table 1: Space Station Parameters

Parameters Assembly Phase 1
Flight#3

Inertia (slug-ft?)
I, 23.22E6 50.28E6
Iy, 1.30E6 10.80E6
I3 23.23E6 58.57E6
Ly —0.023E6 —-0.39E6
Iis 0.477E6 0.16E6
Is —0.011E6 0.16E6

Aerodynamic torque (ft-1b) for Phase 1

wy
w2
w3

1+ sin(nt) + 0.5 sin(2nt)
4+ 2sin(nt) + 0.5sin(2nt)
1+ sin(nt) 4 0.5sin(2nt)

Table 2: Physical bounds for §;-inertia variations

Variation Type

Lower Bound

Upper Bound

—78.5 %t
—100.0 %
—23%
~64.6 %t
21 %

[o o]

o0
+7.6 %t
+16.4 %t
+7.6 %

tdue to pitch open-loop characteristic.
tdue to roll/yaw open-loop characteristic.
*due to triangle inequalities for the moments of inertia.

449

Table 3: Robust H, controller gains for the Phase 1
Space Station

Pitch K7, Roll/Yaw KT Units
6885E4+2  2.559E+2 |ft-lb/rad
4.092E4+5  1.448E+5 |[ft-lb-sec/rad
2648E~3  1.495E-3 |ft-1b/ft-lb-sec

~5.563E—7  4.948E-7 |ft-1b/ft-1b-sec?
—1.147E-10 —4.142E—10|ft-1b-rad? /ft-1b-sec®
5.193E-7  2.263E~7 [ft-1b-rad? /fi-lb-sec?
~9.374E—-10 —~9.864E~10 |ft-1b-rad? /ft-1b-sec?
—3.783E-7 —3.204E—7 |ft-lb-rad®/ft-Ib-sec?
4.531E+2| 1.800E+2  4.115E+42 |ft-lb/rad
2.607E+5| 8.914E4+4  3.719E45 |ft-lb-sec/rad
1.169E—-2| 5.124E—4  2.015E-3 [ft-1b/fi-lb-sec
4.518E-6|—3.149E—7 —1.997TE~7 |[ft-1b/ft-1b-sec?
5.673E-5]~1.567TE-5 —8.042E-5 [ft-lb-rad/sec?
3.598E-2|—6.513E—2 ~2.127E-3 |ft-lb-rad/sec
~1.722E~5] 1.892E—4 —2.489E—4 |ft-lb-rad/sec?
6.626E—2| 8.709E—4  2.506E-~2 |ft-lb-rad/sec

Table 4: Closed-loop eigenvalues of the Phase 1 Space
Station with robust H., controller, in units of orbital
rate, n = 0.0011 rad/sec

Momentum/ Disturbance
Attitude Filter

Pitch -0.54 £ 0.545 | —0.10 £ 1.05j
-1.53, -8.29 | -0.10+ 2.03;

Roll/Yaw | —0.20, —0.21 | —0.13 £ 1.015
-0.31+0877 | —0.33+1.18j
-0.82+0.855 | —0.10 % 1.995
-2.31+£0.655 | —0.27 + 2.065

Table 5: Pitch-axis stability robustness comparison

LQR Robust He,
% '] é ] 5
3 99| c0o| —-99 | 0
L2 -89 [ 34 —-99 1 70
6 1 =171 7 =271 7
64 | =19 16 —40 | 16
6 | =301 7 =31} 7

*§ and & are lower and upper bounds, respectively.



Table 6: Roll/yaw stability robustness comparison

LQR Locall Robust He,
% | & |6 & | &} ¢ 5
5 ~78 | 44 | 64| 29 -78 | 73

s -99 | 43 | —67 ] 30 -99 | 71
83 —61 | 80 | —60 | 61 —58 | 77
84 —64 |64 | —64 35 —64 | 99
b5 —51 |68 | —48 | 50 —49 | 66

tlocal feedback control (decentralized control).
*§ and § are lower and upper bounds, respectively.

Table 7: Weighting factors used in the example design

Weightings Pitch Roll Yaw Units

] 1.5 1.7E-3 | 2.1E-3 | rad

8w 38E-3 | 6.1E~7 | 7T.0E—7 | rad/sec
h 87E+3 | 1.7TE+4 | 3.0E+4 | ft-lb-sec
JL 3.7E+4 | 1.2E+5 | 1.8E+5 | ft-lb-sec?
o 3.5E+4 | 1.6E+8 | 9.2E+42 | sec?/rad
& 21 1.7E+5 | 8.0E-1 | sec/rad
B 2.5E+4 | 3.7E+7 | 1.5E+3 | sec?/rad
el 1.0 3.7E+5 | 3.5E-1 | sec/rad
u 2.7E-2 | 1.0E-1 | 1.2E-1 | ft-Ib

zp 2.7E-2 | 5.0E-2 | 5.0E-2 | ft-Ib

wp 1.0E-2 | 1.0E-2 | 1.0E-2 | ft-Ib

*in units of ft-lb-sec®/rad?, ft-lb-sec?/rad?, ft-lb-sec? /rad?,

and fi-lb-sec? /rad?, respectively.

s 1)

Payload

(Sm)

Space Station 1Bay
Truss Beam 1

Roll

Figure 1: Space Station with MT/MRMS and its large
payload.
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Figure 2: Pitch responses of the robust Hy controller.
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Figure 3: Roll/yaw responses of the robust He con-
troller.



